Asymptotics

- Stating precise running times can be a daunting task, and may depend on implementation.
 - Ex: add two m by n matrices.

for $1 \le i \le m$ do for all $1 \le j \le n$ do $C_{ij} = A_{ij} + B_{ij}$ end for end for

- Intuitive running time: 2nm but:
 - how is the for loop implemented?
 - does C need to be initialized?
 - is it OK to assume that accessing C_{ij} is
 - an atomic operation?

Time Complexity Function

Definition:

Given an algorithm A, a time complexity function is a function f of the input-size that whose value is an upper bound on the maximum number of steps that the algorithm performs.

Ex: The time complexity function for the matrix addition algorithm is f(n,m)=cnm.

We say that an algorithm has running time f(n).

Asymptotics...

- Real running time of algorithm may be c ·nm for some c>2.
- Now assume that A_1 and A_2 are shortest path algorithms with running time $c_1 \cdot n \log n$ and $c_2 \cdot n^2$. Which one is better?
 - \rightarrow depends on c_1, c_2 and n.
- For large instances, however, algorithm A_1 is preferable, as there is n_0 such that

 $c_1 \cdot n \log n \le c_2 \cdot n^2$ for all $n \ge n_0$

Big-"O" Notation

We develop algorithms for hard instances, and therefore care most about order of polynomial of running time!

Definition:

The running time g(n) of a given algorithm is O(f(n)) if there are c and n_0 such that $g(n) \le c \cdot f(n)$

for all $n \ge n_0$.

```
We write: g(n) = O(f(n)).
```

"O"-Notation: Some Examples

•
$$f(n) = \sum_{i=0}^{d} c_i \cdot n^i = O(n^d)$$

- $f_1(n), \ldots, f_d(n) = O(h(n))$ and d is a constant, then $f_1(n) + \ldots + f_d(n) = O(h(n))$
- f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n))

Example: Matrix Addition

for $1 \le i \le m$ do for all $1 \le j \le n$ do $C_{ij} = A_{ij} + B_{ij}$ end for end for

 \rightarrow runs in time O(nm)

Caveat - Size of Numbers

- Assuming that arithmetic operations are constanttime is sometimes incorrect!
 - if numbers involved are large, computers may need several words for their storage
 - this leads to super-constant running times even for simple arithmetic operations!
- Assume: all graph attributes are bounded by polynomials in the input size!

Good Algorithms

- An algorithm is good if it runs fast!
 - more precisely: suppose we want to compare algorithms
 - A and B with time complexity functions f and g, then we should prefer A if f(n)=O(g(n)).
- In general, call an algorithm efficient if its running time is a polynomial in the input size.
 - algorithms with exponential running times are inefficient!

Running Time Comparison

n f(n)	n	n $\log n$	n ²	n ³	1.5^{n}	2^n	n!
10							4 sec
30		1				18 min	10 ²⁵ years
50		< 1	sec		11 min	36 years	
100				1 sec	12892 ye.	10 ¹⁷ years	
1000			1 sec	18 min			
10000			2 min	12 days		ory l	ona
100000		2 sec	3 hours	32 years			, ing
1 mio	1 sec	20 sec	12 days	31710 ye.			

Running times on a computer that executes 1 mio atomic operations per second.