
Asymptotics 
• Stating precise running times can be a daunting 
task, and may depend on implementation.
- Ex: add two m by n matrices.

- Intuitive running time: 2nm .... but:
‣ how is the for loop implemented?
‣ does C need to be initialized?
‣ is it OK to assume that accessing      is

an atomic operation? 

for 1 ≤ i ≤ m do
for all 1 ≤ j ≤ n do

Cij = Aij + Bij

end for
end for

Cij



Time Complexity Function
Definition:
Given an algorithm A, a time complexity function 
is a function f of the input-size that whose value 
is an upper bound on the maximum number of 
steps that the algorithm performs.

Ex: The time complexity function for the matrix 
addition algorithm is f(n,m)=cnm.

We say that an algorithm has running time f(n).



Asymptotics...
• Real running time of algorithm may be         for 
some c>2.

• Now assume that     and     are shortest path 
algorithms with running time              and              
       . Which one is better?
➡ depends on        and n.

• For large instances, however, algorithm     is 
preferable, as there is     such that
                       for all   

c ·nm

A1 A2

c1 · n log n
c2 · n2

c1, c2

A1

n0

c1 · n log n ≤ c2 · n2 n ≥ n0



Big-”O” Notation
We develop algorithms for hard instances, and 
therefore care most about order of polynomial of 
running time!

Definition:
The running time g(n) of a given algorithm is 
O(f(n)) if there are   and    such that

for all         .

We write: g(n) = O(f(n)). 

n ≥ n0

n0c
g(n) ≤ c · f(n)



“O”-Notation: Some Examples

•                      

•                                and d is a constant, 
then 

•                   and                   , then
 

f(n)=
∑d

i=0 ci · ni = O(nd)

f1(n), . . . , fd(n) = O(h(n))
f1(n) + . . . + fd(n) = O(h(n))

f(n) = O(g(n)) g(n) = O(h(n))
f(n) = O(h(n))



Example: Matrix Addition

➡ runs in time O(nm)

for 1 ≤ i ≤ m do
for all 1 ≤ j ≤ n do

Cij = Aij + Bij

end for
end for



Caveat - Size of Numbers
• Assuming that arithmetic operations are constant-
time is sometimes incorrect!
- if numbers involved are large, computers may need several 

words for their storage
- this leads to super-constant running times even for simple 

arithmetic operations!

• Assume: all graph attributes are bounded by 
polynomials in the input size!



Good Algorithms

• An algorithm is good if it runs fast! 
- more precisely: suppose we want to compare 

algorithms
A and B with time complexity functions f and g, then 
we should prefer A if f(n)=O(g(n)).

• In general, call an algorithm efficient if its 
running time is a polynomial in the input size.
- algorithms with exponential running times are 

inefficient!



Running Time Comparison

Running times on a computer that executes 1 mio atomic 
operations per second.

10 4 sec

30 18 min 1025 years

50 11 min 36 years

100 1 sec 12892 ye. 1017 years

1000 1 sec 18 min

10000 2 min 12 days

100000 2 sec 3 hours 32 years

1 mio 1 sec 20 sec 12 days 31710 ye.

n
f(n) n n log n n2 n3 1.5n 2n n!

< 1 sec

very long


