Asymptotics

e Stating precise running times can be a daunting
task, and may depend on implementation.
- Ex: add two m by n matrices.

for 1 <:<mdo
for all1 < j <ndo
Cij = Aij + By
end for
end for

- Intuitive running time: 2nm ... but:

» how is the for loop implemented?

» does C need to be initialized?

» is it OK to assume that accessing C;; is
an atomic operation?




Time Complexity Function

Definition:

Given an algorithm A, a time complexity function
is a function f of the input-size that whose value
is an upper bound on the maximum number of
steps that the algorithm performs.

Ex: The time complexity function for the matrix
addition algorithm is f(n,m)=cnm.

We say that an algorithm has running time f(n).




Asymptotics...

e Real running time of algorithm may be c -nm for
some c>2.

e Now assume that A; and Aj; are shortest path
algorithms with running time c; - nlogn and

c2 - n°. Which one is better?
= depends on C1,¢2 and n.

e For large instances, however, algorithm A; is
preferable, as there is ng such that
Cq ° nlogn S CGot n? for all n > ng




Big-“0O" Notation

We develop algorithms for hard instances, and
therefore care most about order of polynomial of
running time!

Definition:
The running time g(n) of a given algorithm is
O(f(n)) if there are ¢ and ng such that

g(n) <c- f(n)

for all n > ny.

We write: g(n) = O(f(n)).




"O"-Notation: Some Examples

o f(m)=Y o ci - n' = O(n)

o fi (vl fa(n) = O(h(n)) and d is a constant,
then fi(n) 4+ ...+ fq(n) = O(h(n))

e f(n) = O(g(n)) and g(n) = O(h(n)), then
f(n) = O(h(n))




Example: Matrix Addition

for 1 <:<mdo
for all 1 <j5 <ndo
Cij = Aij + Bij
end for
end for

= runs in time O(nm)




Caveat - Size of Numbers

e Assuming that arithmetic operations are constant-
time is sometimes incorrect!

- if numbers involved are large, computers may need several
words for their storage

- this leads to super-constant running times even for simple
arithmetic operations!

e Assume: all graph attributes are bounded by
polynomials in the input size!




Good Algorithms

e An algorithm is good if it runs fast!

- more precisely: suppose we want to compare
algorithms
A and B with time complexity functions f and g, then
we should prefer A if f(n)=0(g(n)).

e In general, call an algorithm efficient if its
running time is a polynomial in the input size.

- algorithms with exponential running fimes are
inefficient!




Running Time Comparison

! f(n) n n logn nZ n3 1.57 on
10
30 18 min
50 11 min 36 years
100 1 sec 12892 ye. | 10V years
1000 1 sec 18 min
10000 2 min 12 days
100000 2 sec 3 hours 32 years
1 mio 1 sec 20 sec 12 days 31710 vye.

n!
4 sec

10%° years

Running times on a computer that executes 1 mio atomic

operations per second.




