Scheduling Framework and Notation

Notation

n	number of jobs
m	number of machines
p_{ij}	processing time of job j on machine i
C_j	completion time of job j
w_j	weight/importance/priority of job j
r_j	release time/first availability of job j
d_j	due date of job j
$L_j = C_j - d_j$	lateness of job j
$T_j = \max(L_j, 0)$	tardiness of job j
$U_j = \begin{cases} 1 & \text{if } C_j > d_j \\ 0 & \text{otherwise} \end{cases}$	lateness indicator of job j
$(\alpha \mid \beta \mid \gamma)$	a scheduling problem with machine environment α , constraints and characteristics β , and objective γ

Machine Environments α

1	one machine	
P or Pm	identical parallel machines	
Q or Qm	parallel machines with different speeds: machine i has speed v_i ;	
	job j takes time p_j/v_i on machine i	
R or Rm	unrelated parallel machines: machine <i>i</i> processes job <i>j</i> at speed v_{ij}	
F or Fm	i flow shop: <i>m</i> machines in series;	
	each job is processed on each machine in order	
J or Jm	job shop: each job is processed on a job-dependent sequence of machines	
$O ext{ or } Om$	open shop: processing order of machines for each job is determined by the scheduler	

Constraints and Characteristics β

r_j	non-trivial release times
$s_{jk}(i)$	set-up times of a machine i between jobs j and k .
pmtn $prec$	preemptions are allowed: a job may be removed from a machine mid process jobs have precedence constraints

Objectives γ

$\sum C_j$	sum of completion times
$\sum w_j C_j$	weighted sum of completion times
$\sum T_j$	sum of tardiness
$\sum w_j T_j$	weighted sum of tardiness
$C_{\max} = \max_{j} \{C_j\}$	makespan/schedule length
$L_{\max} = \max_{j} \{L_j\}$	maximum lateness
$\sum U_j$	number of late jobs
$\sum w_j U_j$	weighted number of late jobs