
CS 31: Algorithms (Spring 2019): Lecture 12
Date: 2nd May, 2019

Topic: Graph Algorithms 2: Applications of Depth First Search
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.

Please notify errors on Piazza/by email to deeparnab@dartmouth.edu.

1 Applications of DFS

In this lecture, we see two applications of DFS on directed graphs. The first deals with
directed acyclic graphs, also called DAGs. The second is a magical application of DFS to
find the strongly connected components of a directed graph.

1.1 Topological Ordering of DAGs

Throughout this subsection,G is a directed acyclic graph (DAG). Recall from the previous
lecture, this means that if we run DFS onG, there are no back edges. DAGs are very useful
and appear in many applications some of which we may visit in the problem set. Here is
a property of DAG which follows from definition.

Claim 1. Every DAG G has at least one sink vertex v with deg+(v) = 0 and one source
vertex v with deg−(v) = 0.

b
Exercise: Complete the proof

A topological ordering of a DAG is an ordering σ[1 : n] of the vertices such that for any
i < j, there is no edge from σ[j] to σ[i]. That is, if we write down the numbers from left
to right in the σ order, then all edges go from left to right. If one thinks of an edge (u, v)
as v being “bigger” than u, then the topological ordering is a linearization of the graph
according to this (partial) order. Of course, not every pair of vertices may be comparable.
Note that the first vertex in the topological order must be a source and the last vertex
must be a sink. b

Exercise: Is the topological ordering of a DAG G unique? If not, is there any special case
when it is?

TOPOLOGICAL ORDERING
Input: Directed Acyclic Graph G.
Output: A topological ordering of G.

Consider running DFS in any arbitrary order on the DAG G.

1



Lemma 1. Let σ be the ordering of the vertices in decreasing order of last[v]. Then, σ is a
topological order.

Proof. Let x and y be two vertices with last[x] < last[y]. We need to show (x, y) can’t be
an edge in G. Suppose it is. If first[x] < first[y], then the edge property would imply
last[y] < last[x] which contradicts the choice. Therefore, we get first[y] < first[x]. But then
(x, y) is a back edge which contradicts the acyclicity of G.

Theorem 1. TOPOLOGICAL ORDERING of any DAG G can be found in Θ(n+m) time.

Proof. There is one extra thing needed to argue about following the previous lemma. We
need the (decreasing) sorted order of lasts; how do we get that in Θ(n + m) time. Two
answers.

One, the last[v]’s are integers between 1 and 2n; so we can sort in Θ(n) time using
Count-Sort. Two, and this is less modular, but we can read out the numbers in increasing
order of last[v] as DFS as being run; after all, it is precisely the order in which the last[v]’s
are set. The topological order is the reverse of that.

1.2 Strongly Connected Components (SCCs) using DFS

This is a deep application which really illustrates the power of DFS. Let’s try to illustrate
the main ideas of the algorithm before giving the final description and analysis. To do so,
consider the graph in Figure 1.

1

2 3

4

5 6

7

8 9
C2 C3

C1

Figure 1: Illustrative example for SCC.

2



In the graph on the left, there are three strongly connected components marked in light
blue circles. The graph on the right is one whose vertices are these three components, and
we have an edge between two components (for instance from C1 to C2) if and only if there
is an edge (u, v) in the original graph with u ∈ C1 and v ∈ C2. Note there could be, and
in this example there are, multiple such edges. We require that there be at least one. In
general, given a graph G as on the left, then the graph on the right is called Gscc; note we
don’t have this graph up front but is useful for analysis and designing the algorithm.

Observation 1. Gscc is a DAG. b
Exercise: Complete the proof.

Before we move on to discovering the SCCs, let us see why the algorithm for undi-
rected graphs is not enough. Recall what we did for undirected graphs; we ran DFS on G
in any order and returned the connected components of the forest. Why doesn’t it work?
Well, in the graph above consider what happens when we run DFS from the vertex 1. You
see that all the vertices are reachable from 1 and thus end up in the tree rooted at 1. The
resulting vertices are not strongly connected. To stress why this is not an issue in undi-
rected graphs note that in undirected graphs if there is a path from a vertex 1 to a set of
vertices S, then there is a path from any vertex in S to 1 as well. This is patently false in
directed graphs.
An Encouraging Idea. Suppose instead we ran DFS from vertex number 9. Then, we
would definitely discover all the vertices that 9 can reach. But these are precisely the ones
in C3, the strongly connected component connecting 9. Why was this? This is because,
there is no edge which starts from inside C3 and goes outside. That is, because C3 is a sink
component of Gscc. But this is wonderful; there is some vertex from which if we start DFS
we get what we want. Let us make this our goal for now.

From our understanding of topological ordering in DAGs, our experience is that the
vertex with the smallest last[v] is a sink vertex in a DAG. Perhaps, we could conjecture it
for a general graph: in any graph G and any DFS run, the vertex with the smallest last[v]
must lie in a sink component of Gscc. Unfortunately, this idea has a hole! b

Exercise: Find an example disproving the above conjecture.

A philosophical interlude. In research, you often think you have an understanding of ob-
jects, and this leads you to make some conjectures. Just like we did above. And often they
are wrong. I’ll not lie – disappointment is usually the first response. But what really de-
fines a researcher is resilience. Counterexamples are the world’s ways of telling us, “Your
understanding was incomplete. Refine them. Think harder.” And when you do get back
to the drawing board, or square one, the world often rewards you with epiphanies.

Epiphany 1. Although the vertex with the smallest last[v] may not be in a SINK component
of Gscc (assuming you did the exercise above), it is in fact true that the vertex with the
largest last[v] does indeed lie in the SOURCE component of Gscc.

3



In fact, more is true. For any component C ∈ Gscc, define

f(C) = max
v∈C

last[v]

Lemma 2. If (Ci, Cj) is an edge in Gscc, then f(Ci) > f(Cj).

Proof. Before we prove the lemma, let’s take a look at the definition again. For any com-
ponent C, let x be the vertex in C with the largest last. Indeed, this vertex also must have
the smallest first.

Claim 2. For any strongly connected component C if x ∈ C has the largest last, then it
also has the smallest first. In particular, x’s interval contains all the intervals of every other
vertex in C.

Proof. Suppose not. Suppose y ∈ C, y 6= x has the smallest first. Since C is strongly
connected, there is a path from y to x. y has the smallest first among all vertices in this
path, so by the path property, it must have the the largest last among all vertices in this
path. In particular, last[y] > last[x]. Contradiction.

Now the proof of the lemma is simple. Let x be the vertex in Ci with the largest last
and y be the vertex in Cj with the largest last. For the sake of contradiction, assume
last[x] < last[y]. By the Nested Interval Property, either (a) first[y] < first[x], that is, x’s
interval is completely contained in y’s interval, or (b) last[x] < first[y], that is x’s interval
is disjoint and lies before y’s interval.

We will reach a contradiction in both cases. Case (a) is easy: if x’s interval is completely
contained in y’s interval, then there is a path from y to x in the DFS forest. In particular,
that would imply an edge from Cj to Ci in the Gscc contradicting the DAG nature of Gscc.

In Case (b), x’s interval finishes before y’s interval. By the claim above, this means
that the interval of every vertex in Ci finishes before the interval of any vertex in Cj starts.
Now since (Ci, Cj) is an edge, there is some u ∈ Ci and v ∈ Cj such that (u, v) is an edge
in G. From the claim, we see first[u] < last[u] < first[v] < last[v]; this contradicts the edge
property.

The above lemma means that arranging the components by increasing order of f(Cj)
gives the topological order of Gscc; a generalization of the topological ordering theorem
for DAGs where G = Gscc. It also implies that the largest last[v] must lie in a source vertex
of Gscc. Suppose not, then if it lies in Cj and there is an edge (Ci, Cj), the above lemma
implies f(Ci) > f(Cj) contradicting the choice of v. Coming back to the problem at hand,
why is the above useful in finding a vertex in the sink component? A second epiphany
answers this.

Epiphany 2. Let Grev be the graph where all edges of G have been reversed. Observe that
the strongly connected components of Grev are the precisely the same as those in G, and
that (Grev)

scc = (Gscc)rev. In other words, the source components of (G)scc are precisely the
sink components of (Grev)

scc. Therefore, if we run DFS on G and look at the vertex with

4



the largest last[v] that is guaranteed to be in the sink component of (Grev)
scc. Which will

allow us to find the strongly connected components of (Grev). Which is the same as the
strongly connected components of G. Done!

1: procedure STRONCONNCOMP(G):
2: . Returns the strongly connected components of G
3: Run DFS(G, {1, 2, . . . , n}) to get last[v] for every vertex.
4: π be the decreasing order of last[v]’s. . Can be found in Θ(n) time a la Top. Ord.
5: Obtain Grev. . This takes Θ(n + m) time.
6: Run DFS(Grev, π) and return the connected components of the forest F .

Lemma 3. The above algorithm returns the strongly connected components correctly.

Proof. Let C1, . . . , Ck be the components ofGscc. We claim that the components of the final
forest F returned in Line 6 are these components returned in topological order of Gscc.
We assume this is true for the first i components returned in Line 6 and we argue about
the (i + 1)th component; we start with i = 0 (so in the beginning we have a vacuous
statement).

Note that the vertex v picked as root at the (i + 1)th step is the first vertex in π not in
C1 ∪ . . . ∪ Ci. That is, last[v] = maxu/∈C1,·,Ci

last[u]. Suppose v lies in component Cj of Gscc.
Lemma 2 implies Cj is a source component in Gscc \ (C1∪· · ·∪Ci). Suppose not; then there
is some (Ck, Cj) edge, k > i, which implies f(Ck) > f(Cj) contradicting the choice of v.
Therefore Cj is a source component of Gscc \ (C1 ∪ · · · ∪ Ci).

That is, Cj is a sink component of (Grev)
scc \ (C1 ∪ · · · ∪ Ci). Now notice that the DFS

run from vertex v on Grev will only discover vertices in Cj as it is a sink component. That
is, the (i + 1)th step discovers a sink component of (Grev)

scc \ (C1 ∪ · · · ∪ Ci), and thus
consistent with the reverse topological order in (Grev)

scc which is the topological order of
Gscc.

5


	Applications of DFS
	Topological Ordering of DAGs
	Strongly Connected Components (SCCs) using DFS


