CS 31: Algorithms (Spring 2019): Lecture 1 Supplement

Date: 26th March, 2019

Topic: Addition!

Disclaimer: These notes have not gone through scrutiny and in all probability contain errors. Please email errors to deeparnab@dartmouth.edu.

1 Correctness of the Addition Algorithm

We start with the subroutine for adding one-bit numbers. We denote this the BIT-ADD routine which takes input three bits b_1 , b_2 , b_3 and returns two bits (c, s). Note that the binary number with 'first' digit c and 'second' digit s is precisely 2c + s. For instance, the number 10 is $2 \cdot 1 + 0 = 2$ and the number 11 is $2 \cdot 1 + 1 = 3$. The property of BIT-ADD is that it returns (c, s) with the property $b_1 + b_2 + b_3 = 2c + s$. This subroutine is "hard-coded" using the following truth table.

b_1	b_2	b_3	(c,s)
0	0	0	(0,0)
0	0	1	(0,1)
0	1	0	(0,1)
1	0	0	(0,1)
0	1	1	(1,0)
1	0	1	(1,0)
1	1	0	(1,0)
1	1	1	(1,1)

You should check the above table satisfies $b_1 + b_2 + b_3 = 2c + s$.

Armed with this, we can define our grade-school addition. This is slightly (more wastefully) defined below than in the lecture notes in that we are defining a "carry array". This is purely for the convenience of the proof that is about to follow.

```
1: procedure ADD(a[0:n-1], b[0:n-1]):
       \triangleright The two numbers are a and b
2:
       Initialize carry [0:n] \leftarrow 0 to all zeros.
3:
       Initialize c[0:n] to all zeros \triangleright c[0:n] will finally contain the sum
4:
       for i = 0 to n - 1 do:
5:
            (carry[i+1], c[i]) \leftarrow BIT-ADD(a[i], b[i], carry[i])
6:
            \triangleright Invariant: a[i] + b[i] + carry[i] = 2carry[i+1] + c[i]
7:
       c[n] \leftarrow carry[n]
8:
       return c
9:
```

Remark: The above algorithm returns an (n + 1)-bit number whose (n + 1)th bit is 0 if the final carry is 0, otherwise it is 1. Before going into the proof of correctness, do you see why two n bit numbers cannot give a number with > n + 1 bits?

Theorem 1. The algorithm ADD is correct.

Proof. To prove ADD is correct, we need to show no matter what a, b is, the number represented by the bit-array c[0:n] is precisely a + b. There is really no two ways to prove this – we look at the algorithm and see what the c[i]'s are and try to show that

$$\sum_{i=0}^{n} c[i] \cdot 2^{i} = \sum_{i=0}^{n-1} a[i] \cdot 2^{i} + \sum_{i=0}^{n-1} b[i] \cdot 2^{i}$$

To do so, we use the property of BIT-ADD stated in Line 7 of ADD:

For all
$$0 \le i \le n-1$$
, $c[i] = a[i] + b[i] + (carry[i] - 2carry[i+1])$ (1)

Multiplying both sides by 2^i and adding, we get

$$\sum_{i=0}^{n-1} c[i] \cdot 2^{i} = \left(\sum_{i=0}^{n-1} a[i] \cdot 2^{i}\right) + \left(\sum_{i=0}^{n-1} b[i] \cdot 2^{i}\right) + \left(\sum_{i=0}^{n-1} \operatorname{carry}[i] \cdot 2^{i} - \sum_{i=0}^{n-1} \operatorname{carry}[i+1] \cdot 2^{i+1}\right)$$

We are done proving c = a + b. To see this, observe LHS is precisely $c - c[n] \cdot 2^n = c - \operatorname{carry}[n] \cdot 2^n$. The first parenthesized item of the RHS is a. The second parenthesized item of the RHS is b. The third is interesting; if you open up the summation you see that many terms cancel out and evaluates to $\operatorname{carry}[0] \cdot 2^0 - \operatorname{carry}[n] \cdot 2^n$ (make sure you see this.). This canceling behavior is often seen in summations and is given a name in math: it is said that this summation *telescopes* to only two terms, much like a long elongated telescope folds into one compact tube.

Phew! Our grade school teacher was correct.