
CS 31: Algorithms (Spring 2019): Lecture 1 Supplement
Date: 26th March, 2019

Topic: Addition!
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.

Please email errors to deeparnab@dartmouth.edu.

1 Correctness of the Addition Algorithm

We start with the subroutine for adding one-bit numbers. We denote this the BIT-ADD
routine which takes input three bits b1, b2, b3 and returns two bits (c, s). Note that the
binary number with ‘first’ digit c and ‘second’ digit s is precisely 2c+ s. For instance, the
number 10 is 2 · 1 + 0 = 2 and the number 11 is 2 · 1 + 1 = 3. The property of BIT-ADD is
that it returns (c, s) with the property b1+b2+b3 = 2c+s. This subroutine is “hard-coded”
using the following truth table.

b1 b2 b3 (c, s)
0 0 0 (0,0)
0 0 1 (0,1)
0 1 0 (0,1)
1 0 0 (0,1)
0 1 1 (1,0)
1 0 1 (1,0)
1 1 0 (1,0)
1 1 1 (1,1)

You should check the above table satisfies b1 + b2 + b3 = 2c+ s.
Armed with this, we can define our grade-school addition. This is slightly (more

wastefully) defined below than in the lecture notes in that we are defining a “carry ar-
ray”. This is purely for the convenience of the proof that is about to follow.

1: procedure ADD(a[0 : n− 1], b[0 : n− 1]):
2: . The two numbers are a and b
3: Initialize carry[0 : n]← 0 to all zeros.
4: Initialize c[0 : n] to all zeros . c[0 : n] will finally contain the sum
5: for i = 0 to n− 1 do:
6: (carry[i+ 1], c[i])← BIT-ADD(a[i], b[i], carry[i])
7: . Invariant: a[i] + b[i] + carry[i] = 2carry[i+ 1] + c[i]

8: c[n]← carry[n]
9: return c

1



Remark: The above algorithm returns an (n + 1)-bit number whose (n + 1)th bit is 0 if the
final carry is 0, otherwise it is 1. Before going into the proof of correctness, do you see why two
n bit numbers cannot give a number with > n+ 1 bits?

Theorem 1. The algorithm ADD is correct.

Proof. To prove ADD is correct, we need to show no matter what a, b is, the number rep-
resented by the bit-array c[0 : n] is precisely a + b. There is really no two ways to prove
this – we look at the algorithm and see what the c[i]’s are and try to show that

n∑
i=0

c[i] · 2i =
n−1∑
i=0

a[i] · 2i +
n−1∑
i=0

b[i] · 2i

To do so, we use the property of BIT-ADD stated in Line 7 of ADD:

For all 0 ≤ i ≤ n− 1, c[i] = a[i] + b[i] + (carry[i]− 2carry[i+ 1]) (1)

Multiplying both sides by 2i and adding, we get

n−1∑
i=0

c[i] · 2i =

(
n−1∑
i=0

a[i] · 2i
)

+

(
n−1∑
i=0

b[i] · 2i
)

+

(
n−1∑
i=0

carry[i] · 2i −
n−1∑
i=0

carry[i+ 1] · 2i+1

)

We are done proving c = a + b. To see this, observe LHS is precisely c − c[n] · 2n =
c − carry[n] · 2n. The first parenthesized item of the RHS is a. The second parenthesized
item of the RHS is b. The third is interesting; if you open up the summation you see
that many terms cancel out and evaluates to carry[0] · 20 − carry[n] · 2n (make sure you see
this.). This canceling behavior is often seen in summations and is given a name in math:
it is said that this summation telescopes to only two terms, much like a long elongated
telescope folds into one compact tube.

Phew! Our grade school teacher was correct.

2


	Correctness of the Addition Algorithm

