
CS 31: Algorithms (Spring 2019): Lecture 3
Date: 28th March, 2019

Topic: Divide and Conquer – Merge Sort, Recurrences, Counting Inversions
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.

Please email errors to deeparnab@dartmouth.edu.

In the next few lectures we will look at the divide and conquer paradigm for algorithm
design. The problems we will run this technique on will have “naive” or “first-try” al-
gorithms which are polynomial time, but the divide-and-conquer paradigm will lead to
significantly faster algorithms.

The methodology is something we already encountered in Lecture 1: when given a
problem, we break/divide it into one or more smaller subproblems, recursively solve the
smaller sub-problems, and then combine/conquer the solutions to get the solution to the
original problem at hand. The proof of correctness will follow from the way we set it up,
and how we handle the base cases. The running time analysis involves solving recurrence
inequalities.

Let’s start with an algorithm you have seen before.

1 Merge Sort

SORTING AN ARRAY
Input: An array A[1 : n] of integers.
Output: A sorted (non-decreasing) permutation B[1 : n] of A[1 : n].
Size: The number n of entries in A.

Remark: It is fair to ask why the size of the problem above doesn’t include the number of
bits required to encode A[j]’s and x. The short answer is that it is a modeling choice. If the
numbers A[j]’s are “small”, that is, they are at most some polynomial in n and thus fit in
O(log n) sized registers, then we assume that simple operations such as adding, multiplying,
dividing, comparing, reading, writing take Θ(1) time. The reason being that for numbers that
fit in word/registers indeed these operations are fast compared to the other operations of the
algorithm.

Before we go into the divide-and-conquer algorithm for sorting, let us discuss the
naive algorithm. Here is one: scan the whole array to find the minimum element, set it
to B[1] and remove it from A. Repeat the above process n − 1 times more. The jth scan
takes (n − j) time, and thus the total time taken is Θ(n2). Quadratic time is not bad; it
is definitely better than going over all the n! permutations and choosing the sorted one.
But, we can do better using divide-and-conquer.

1



This algorithm is merge-sort. You have perhaps seen this algorithm before (in CS 10 or
CS 1), and the idea nicely captures the Divide-and-Conquer strategy.

First we notice if n = 1, then we return the same array; this is the base case.
If n > 1, then we first divide A[1 : n] into two halves: A[1 : n/2] and A[n/2 + 1 : n].

We recursively apply the same algorithm to these halves to obtain sorted versions B1 and
B2. Note that the final answer that we need is a sorted version of B1 ∪ B2. So in the
combine/conquer step we do exactly this.

At this point we need to figure out a “win”: why is sorting B1 ∪ B2 any easier than
sorting A[1 : n] to begin with. The fact we exploit is that these B1 and B2 individually are
sorted. That is why we can in fact sort B1 ∪B2 way faster than the Θ(n2) naive algorithm
for A[1 : n]. This is the non-trivial part of the algorithm, and once we get a “win” here
over the naive algorithm, we will see that we get a win over all.

Combine Step. Let us then recall the Combine procedure of MERGESORT

COMBINE
Input: Two sorted arrays P [1 : p] and Q[1 : q].
Output: Sorted array R[1 : r] of P ∪Q, with r = p + q.
Size: p + q.

This is an iterative algorithm which keeps three pointers i, j, k all set to 1. At each step
we compare P [i] and Q[j] and R[k] is set to whichever is smaller. That particular pointer
and k are incremented. The process stops when either i reaches p + 1 or j reaches q + 1 in
which case the rest of the other array is appended to R. The algorithm is correct since (a)
it is sorted since every number inserted in R is at least as large as the previous number
inserted in R, and (b) all the numbers of P ∪Q appear in R. It takes Θ(p + q) time as each
step takes Θ(1) time, in each step either i or j increments, and so the algorithm is over in
(p + q) steps. A formal pseudocode is given below both of the above combine step and
the merge sort.

2



1: procedure COMBINE(P [1 : p], Q[1 : q]):
2: . P and Q are sorted; outputs R which is sorted P ∪Q.
3: i = j = k ← 1.
4: while i < p + 1 and j < q + 1 do:
5: if (P [i] ≤ Q[j]) then:
6: R[k]← P [i]
7: i← i + 1
8: else:
9: R[k]← Q[j]

10: j ← j + 1
k ← k + 1

11: if i > p then:
12: Append rest Q[j : q] to R
13: else:
14: Append rest of P [i : p] to R

15: return R.

Merge Step.

1: procedure MERGESORT(A[1 : n]):
2: . Returns sorted order of A[1 : n]
3: if n = 1 then:
4: return A[1 : n]. . Singleton Array

5: m← bn/2c
6: B1 ←MERGESORT(A[1 : m])
7: B2 ←MERGESORT(A[m + 1 : n])
8: return COMBINE(B1, B2)

Theorem 1. MERGESORT takes O(n log n) time.

Proof. Let T (n) be the worst case running time of MERGESORT on arrays of size n. For
small n, the time taken is some constant which is expressed below.

T (1) = Θ(1) (1)

For a given n, let us fix the worst array A[1 : n] which makes MERGESORT run in T (n)
time. As we can see the time taken by the algorithm is in Lines 6,7, and 8. These respec-
tively take time at most T (m), T (n−m), and Θ(n). Noting that m = bn/2c, we get

T (n) ≤ T (bn/2c) + T (dn/2e) + Θ(n), ∀n > 1 (2)

3



To get to the big picture, we get rid of the floors and ceilings. In the supplement, you
can see why this is kosher1. But for now let’s simplify life. Furthermore, we also replace
the Θ(n) term by ≤ a · n for some constant a, to get

T (n) ≤ 2T (n/2) + a · n, ∀n > 1 (3)

We will apply the “kitty method”

T(n)

n/2 n/2

n/4 n/4 n/4 n/4

Kitty

≤ an

≤ a(n/2) + a(n/2) = an

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8 ≤ a(n/4) * 4 = an

… …

or “opening up the brackets” method to solve the recurrence inequality given by (1) and
(3).

T (n) ≤ 2T (n/2) + an

≤ 2 (2T (n/4) + an/2) + an

= 4T (n/4) + 2an

≤ 4 (2T (n/8) + an/4) + 2an

= 8T (n/8) + 3an

...

≤ 2kT (n/2k) + kan

Setting k such that n/2k ≤ 1 gives us T (n) = O(n log n).

1.1 The Master Theorem

Theorem 2. Consider the following recurrence:

T (n) ≤ a · T (dn/be) + Θ(nd)

1if you are a little worried about this, then (a) good, and (b) note that for large x, dxe, bxc are really x±
some “lower order” term, and so since we are talking using the Big-Oh notation, it shouldn’t matter.

4



where a, b, d are non-negative integers. Then, the solution to the above is given by

T (n) =


O(nd) if a < bd

O(nd log n) if a = bd

O(nlogb a) if a > bd

The proof is quite similar to the proof that the recurrence (2) solves to T (n) ≤ O(n log n).
Instead of splitting into two, each “ball” splits into a different balls each of size n/b (ignor-
ing floors & ceilings), but it puts Θ(nd) in the kitty. If you write the expression as above
(it’s a little more complicated than the one we say before), then you will get a geometric
series whose base is exactly a/bd.

Thus if a < bd (that is, the base < 1), then the geometric sum is small, and the total cost
is bounded by the first deposit in the kitty. If a = bd (that is, if the base = 1) then we make
around the same amount of deposits in the kitty, and we do it Θ(log n) times. Finally, if
a > bd, then the geometric series is bounded by the other end, and the “number of small
balls” (which is this bizarrish term nlogb a) is what dominates.

All this is perhaps too high-level to be useful – see the supplement for the proof. b

Exercise:

• Solve the recurrence T (n) ≤ 2T (n/2) + Θ(1).
• Solve the recurrence T (n) ≤ T (n/3) + T (2n/3) + Θ(n).
• Solve the recurrence T (n) ≤

√
n · T (

√
n) + Θ(n).

2 Counting Inversions

We now look at a closely related problem. Given an array A[1 : n], the pair (i, j) for 1 ≤
i < j ≤ n is called an inversion if A[i] > A[j]. For example, in the array [10, 20, 30, 50, 40],
the pair (4, 5) is an inversion.

COUNTING INVERSION
Input: An array A[1 : n]
Output: The number of inversions in A.
Size: n, the size of the array.

There is a naive O(n2) time algorithm: go over all pairs and check if they form an
inversion or not. We now apply the divide-and-conquer paradigm to do better.

If n = 1, then the number of inversions is 0. Otherwise, suppose we divide the array
into two: A[1 : n/2] and A[n/2 + 1 : n]. Recursively, suppose we have computed the
number of inversions in A[1 : n/2] and A[n/2 + 1 : n]. Let these be I1 and I2, respectively.
Note that any inversion (i, j) in A[1 : n] satisfies either
(a) i < j ≤ n/2, which implies (i, j) is an inversion in A[1 : n/2], or

5



(b) n/2 + 1 ≤ i < j, which implies (i, j) is an inversion in A[n/2 + 1 : n], or
(c) i ≤ n/2 < j, and these are the extra inversions over I1 + I2 that we need to count.

Let’s call any (i, j) of type (c) above a cross inversion, and let C denote this number.
Then by what we said above, we need to return I1 + I2 +C. Is it any easier to calculate C?

After you think about it for a while, there may not seem to be any easy way to calculate
C faster than O(n2). There are two crucial observations that help here.

• The number of cross-inversions between A[1 : n/2] and A[n/2 + 1 : n] is the same as
between sort(A[1 : n/2]) and sort(A[n/2 + 1 : n]).
• If A[1 : n/2] and A[n/2 + 1 : n] were sorted, then the cross-inversions can be calcu-

lated in O(n) time. This may not be immediate, but if you understand the COMBINE
subroutine above, then it should ring a bell. We elaborate it on it later.

Cross-Inversions between Sorted Arrays. Given two sorted arrays P [1 : p] and Q[1 : q],
we can count the number of cross-inversion pairs (i, j) such that P [i] > Q[j] in O(n) time
as follows. As in COMBINE we start off with two pointers i, j initialized to 1. We also store
a counter num initialized to 0. We check if P [i] > Q[j] or not. If it isn’t, then we increment
i = i+ 1. Otherwise, we increment num = num+ (p− i+ 1) and j = j + 1. The claim below
explains why we increment the num as we do. We stop when either i = p + 1 or j = q + 1.

Claim 1. At any stage, suppose the algorithm encounters P [i] > Q[j]. Then {(i′, j) : i′ ≥ i}
are the only cross-inversions which involve j.

Proof. Since P is sorted, P [i′] > Q[j] for all i′ ≥ i and so all such (i′, j) are inversions.
Now consider any i′′ < i. Since in the algorithm the pointer is at i > i′′, at some previous
stage the algorithm compared P [i′′] and Q[j′′] with j′′ ≤ j, and found P [i′′] ≤ Q[j′′]. But
since Q is sorted, this would imply P [i′′] ≤ Q[j]. This implies for all i′′ < i, (i′′, j) is not an
inversion.

1: procedure COUNTCROSSINV(P [1 : p], Q[1 : q]):
2: . P and Q are sorted; outputs the number of (i, j) with P [i] > Q[j].
3: i← 1; j ← 1; num← 0.
4: while i < p + 1 and j < q + 1 do:
5: if (P [i] > Q[j]) then:
6: num← num + (p− i + 1)
7: j ← j + 1
8: else:
9: i← i + 1

Now we are armed to describe the divide-and-conquer algorithm for counting inver-
sions.

6



1: procedure COUNTINV1(A[1 : n]):
2: . Counts the number of inversions in A[1 : n]
3: if n = 1 then:
4: return 0. . Singleton Array

5: m← bn/2c
6: I1 ←COUNTINV1(A[1 : m])
7: I2 ←COUNTINV1(A[m + 1 : n])
8: B1 ←MERGESORT(A[1 : m])
9: B2 ←MERGESORT(A[m + 1 : n])

10: C ←COUNTCROSSINV(B1, B2)
11: return I1 + I2 + C.

Let’s analyze the time complexity. As always, let T (n) be the worst case running time
of COUNTINV1 on an array of length n. Let A[1 : n] be the array attaining this time,
and let’s see the run of the algorithm on this array. The time taken by Lines 6 and 7 are
T (bn/2c) and T (dn/2e) respecively. The time taken by Line 10 takes Θ(n) time by what
we described above. Furthermore, the Lines 8 and 9 takes Θ(n log n) time. Together, we
get the following recurrence

T (n) ≤ T (bn/2c) + T (dn/2e) + Θ(n log n)

The above ‘almost’ looks like (2), and indeed the recurrence solves to T (n) = Θ(n log2 n).
You should
solve this
and check
yourself.

But there is something wasteful about the above algorithm. In particular, if you run it
on a small example by hand you will see that you are sorting a lot. And often the same
sub-arrays. Is there some way we can exploit this and get a faster algorithm?

Indeed we can. This introduces a new idea in the divide-and-conquer paradigm: we
can get more by asking for more. This “asking for more” technique is something you may
have seen while proving statements by induction where you can prove something you
want by actually asking to prove something stronger by induction. In this problem, we
ask our algorithm to do more: given an array A[1 : n] it has to count the inversions and
also has to sort the array too. Now note that in this case Lines 8 and 9 are not needed any
more; this is returned by the new stronger algorithm. We however need to also return the
sorted array : but this precisely what COMBINE does. So the final algorithm for counting
inversions is below.

7



1: procedure SORT-AND-COUNT(A[1 : n]):
2: . Returns (B, I) where B = sort(A) and I is the number of inversions in A[1 : n]
3: if n = 1 then:
4: return (A, 0). . Singleton Array

5: m← bn/2c
6: (B1, I1)← SORT-AND-COUNT(A[1 : m])
7: (B2, I2)← SORT-AND-COUNT(A[m + 1 : n])
8: C ← COUNTCROSSINV(B1, B2)
9: B ← COMBINE(B1, B2)

10: return (B, I1 + I2 + C)

Now we see that the recurrence for the running time of SORT-AND-COUNT is precisely

T (n) ≤ T (bn/2c) + T (dn/2e) + Θ(n)

Theorem 3. SORT-AND-COUNT returns the number of inversions of an array A[1 : n] in
Θ(n log n) time.

8


	Merge Sort
	The Master Theorem

	Counting Inversions

