
CS 31: Algorithms (Spring 2019): Lecture 4
Date: 2nd April, 2019

Topic: Divide and Conquer 2: MaxRangeSubArray, Karatsuba
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.

Please email errors to deeparnab@dartmouth.edu.

1 Maximum Range Subarray

In this problem, we are given an array A[1 : n] of numbers (think integers or reals), and
the goal is to find i < j such that A[j]− A[i] is maximized.

MAXIMUM RANGE SUBARRAY
Input: Array A[1 : n] of integers.
Output: Indices 1 ≤ i ≤ j ≤ n such that A[j]− A[i] is maximized.
Size: n, the length of A.

Once again, there is a trivial O(n2) time algorithm; go over all pairs (i, j) and choose
the one that maximizes A[j] − A[i]. Once again, we think of a divide and conquer algo-
rithm. Suppose we solved the problem on A[1 : n/2] and A[n/2 + 1 : n]. More precisely,
suppose (i1, j1) was the MRS for A[1 : n/2] and (i2, j2) was the MRS for A[n/2 + 1 : n].
Clearly both of these are candidate or feasible solutions for A[1 : n].

Are there other candidate solutions? Yes, and these are of the form (i, j) with i ≤ n/2
and n/2 < j. Is it any easier to find such “cross” (i, j) pairs? In this case the answer is a
resounding yes!: since we are trying to maximize A[j] − A[i], we should choose j which
maximizes A[j] in n/2 < j ≤ n and choose i such that A[i] is minimized in 1 ≤ i ≤ n/2.
These are O(n)-time operations; a win over O(n2)!

1: procedure MRS0(A[1 : n]):
2: . Returns 1 ≤ i ≤ j ≤ n maximizing A[j]− A[i].
3: if n = 1 then:
4: (i, j)← (1, 1). . Singleton Array
5: return (i, j).
6: m← bn/2c
7: (i1, j1)←MRS0(A[1 : m])
8: (i2, j2)←MRS0(A[m + 1 : n])
9: i3 ← arg min1≤t≤m A[t] . Takes O(m) time

10: j3 ← arg maxm+1≤t≤nA[t] . Takes O(m) time
11: return best among (i1, j1), (i2, j2), (i3, j3). . Takes O(1) time

1



As in merge-sort and counting inversions, if T (n) is the worst case running time of
MRS0, then looking at the running time on the worst array of length n, we get

T (n) ≤ T (bn/2c) + T (dn/2e) + Oa(n)

which evaluates to T (n) = Θ(n log n). This seems good, but in fact we can actually do
better using a similar idea as discussed in counting inversions algorthm: Ask More!

If you “opened up” the recursion tree, you would observe that the Θ(n) time to com-
pute the max’s and the min’s in Lines 9 and 10 seems repetitive; the same comparisons are
made more than once. This gives an idea of what to ask more for; we want our maximum
range sub-array algorithm also returns the maximum and minimum of that sub-array.
This gives us the next algorithm.

1: procedure MRS(A[1 : n]):
2: . Returns (s, t, i, j) where

• A[j]− A[i] is maximized, and
• s, t are the indices of the min and max of A, respectively.

3: if n = 1 then:
4: return (1, 1, 1, 1) . Singleton Array

5: m← bn/2c
6: (s1, t1, i1, j1)←MRS(A[1 : m])
7: (s2, t2, i2, j2)←MRS(A[m + 1 : n])
8: s← arg min(A[s1], A[s2]) and t← arg max(A[t1], A[t2]). . Takes O(1) time
9: (i, j)← best solution among {(i1, j1), (i2, j2), (s1, t2)}.. Takes O(1) time

10: return (s, t, i, j).

The conquer step in Line 8 takes only O(1) time: the max of the whole array is the
max of the maxima in the two halves. Same for the minima. Therefore, the recurrence
inequality becomes

T (n) ≤ T (dn/2e) + T (bn/2c) + O(1)

solving which gives us the following.

Theorem 1. The MRS algorithm returns the maximum-range sub-array in Θ(n) time.

2 Multiplying Polynomials Faster: Karatsuba’s Algorithm

Next we consider the problem of multiplying polynomials. The input is the (n+ 1) coeffi-
cients of two univariate degree n polynomials p(x) and q(x) given as P [0 : n] and Q[0 : n].
That is,

p(x) =
n∑

i=0

P [i] · xi and q(x) =
n∑

j=0

Q[j] · xj

2



We desire to output the coefficients the polynomial r(x) = p(x) ·q(x). Note that the degree
of r(x) is 2n, and thus the coefficients needs to be stored in an array R[0 : 2n]. We also
assume that every P [i], Q[j] are “small” numbers and so they can be added and multiplied
in Θ(1) time1.

An O(n2) time algorithm follows from the formula for R[k] which is as follows:

∀0 ≤ k ≤ 2n, R[k] =
∑

0≤i,j≤n:i+j=k

P [i] ·Q[j] =

{∑
0≤i≤k P [i] ·Q[k − i] if k ≤ n∑
(k−n)≤i≤n P [i] ·Q[k − i] if n < k ≤ 2n

(1)
Do you see this? By the way, in signal processing this has another name. The array
R[0 : 2n] is called the convolution of the two arrays P [0 : n] and Q[0 : n]. The above
formula gives a O(n2)-time algorithm to compute the convolution.
We now show how Divide-and-Conquer gives a faster algorithm.

Remark: The story goes that in the early 1960s the famous Russian mathematician Andrei
Kolmogorov held a seminar with the objective to show that any algorithm needs Ω(n2) to
multiply two degree n polynomials. After the first meeting, a young student named Anatoly
Karatsuba came up with the algorithm we are about to describe. Kolmogorov canceled the
remainder of the seminar.

Let m = dn/2e. Consider the polynomial p(x) and write it as

p(x) = p1(x) + xmp2(x) where p1(x) =
m−1∑
i=0

P [i]xi and p2(x) =
n−m∑
i=0

P [m + i]xi (2)

Similarly write

q(x) = q1(x) + xmq2(x) where q1(x) =
m−1∑
j=0

Q[j]xj and q2(x) =
n−m∑
j=0

Q[m + j]xj (3)

This gives us the following formula for r(x) = p(x) · q(x).

r(x) = (p1(x) + xmp2(x)) · (q1(x) + xmq2(x))

=
(
p1(x) · q1(x)

)
+ xm ·

(
p1(x) · q2(x) + p2(x) · q1(x)

)
+ x2m ·

(
p2(x) · q2(x)

)
(4)

Now note that all four polynomials p1(x), p2(x), q1(x), q2(x) have degree ≤ dn/2e. There-
fore, (4) implies that r(x) can be computed by recursively multiplying the four pairs
(p1(x), q1(x)), (p1(x), q2(x)), (p2(x), q1(x)), and (p2(x), q2(x)). Subsequently, we need to add
these polynomials up, but adding polynomials is a simple Θ(n) operation.

1If they are d-digits, this is what was studied in the Supplemental Problem : Number Theory set – take
a look.

3



To sum, the above recursive algorithm has the following recurrence inequality: T (n) ≤
4T (dn/2e) + Θ(n). We apply the Master Theorem and get T (n) = O(n2). Sigh! Much ado
about nothing?

Next comes the Aha! insightful observation. We observe that we really don’t need the
individual products p1(x) · q2(x) and p2(x) · q1(x); rather we need just their sum.

Observation 1.

p1(x)q2(x) +p2(x)q1(x) =
(
p1(x) +p2(x)

)
·
(
q1(x) + q2(x)

)
−
(
p1(x) · q1(x)

)
−
(
p2(x) · q2(x)

)
Therefore, the (4) can be computed using 3 multiplication of polynomials of degree

dn/2e. These three are
(
p1(x) ·q1(x)

)
,
(
p2(x) ·q2(x)

)
, and

(
(p1(x)+p2(x)) · (q1(x)+q2(x))

)
.

After computing this, the polynomial r(x) can be computed using (4) and Observation 1
with Θ(1) polynomial additions and subtractions. Now, the recurrence inequality gov-
erning the above algorithm becomes

T (n) ≤ 3T (dn/2e) + Θ(n)

which gives us the following.

Theorem 2. The algorithm KARATMULTPOLY multiplies two n-degree univariate poly-
nomials in O(nlog2 3) = O(n1.59) time.

4



1: procedure KARATMULTPOLY(P [0 : n], Q[0 : n]):. We want to return R[0 : 2n].
2: if n = 0, 1 then:
3: return R[0 : 2n] using the naive multiplication
4: m = dn/2e.
5: . Recall definitions of p1(x), p2(x), q1(x), q2(x) from (2),(3)
6: for 0 ≤ i ≤ m− 1 do
7: P ′[i] = (P [i] + P [m + i])
8: Q′[i] = (Q[i] + Q[m + i])

9: if n > 2m− 1 then: . In which case n = 2m since m = n/2 or m = (n+ 1)/2.
10: P ′[m] = P [n]
11: Q′[m] = Q[n]
12: else:
13: P ′[m] = Q′[m] = 0

14: . Now P ′ has the coefficients of p1(x)+p2(x). Q′ has the coefficients of q1(x)+q2(x).
15: . Their degrees are m− 1 or m depending on the parity of n.
16: . The else statement above forces degree m.
17:
18: R1[0 : 2(m− 1)] = KARATMULTPOLY (P [0 : m− 1], Q[0 : m− 1])
19: R2[0 : 2(n−m)] = KARATMULTPOLY (P [m : n], Q[m : n])
20: R3[0 : 2m] = KARATMULTPOLY (P ′[0 : m], Q′[0 : m])
21: . R1 has the coefficients of p1(x) · q1(x)
22: . R2 has the coefficients of p2(x) · q2(x)
23: . R3 has the coefficients of (p1(x) + p2(x)) · (q1(x) + q2(x))
24: . Also note that R1, R2, R3 all have length ≤ 2m. We assume they all are 2m length

by padding 0’s.
25: for 0 ≤ i ≤ 2m do:
26: R4[i] = (R3[i]−R1[i]−R2[i])
27: . R4 has the coefficients of p1(x) · q2(x) + p2(x) · q1(x) and is degree 2m
28: for 0 ≤ i ≤ 2n do:
29: R[i] = R1[i] + R4[i−m] + R2[i− 2m]
30: . We assume an array ‘returns 0’ if indexed out of its range. For instance, R4[−1]

returns 0 and R1[2n] returns 0.
31: . When you actually code it, you need a few “if” statements to implement the

above. A drill will ask you to do this. Please do that – it’s super instructive.
32: return R[0 : 2n]

5


	Maximum Range Subarray
	Multiplying Polynomials Faster: Karatsuba's Algorithm

