
CS31 (Algorithms), Spring 2020 : Lecture 1
Topic: Algorithms with numbers, Intro to Algorithms Analysis

Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.
Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

In this lecture, we are going to look at some algorithms involving numbers.

1 Addition

All of us see an algorithm as early as in elementary school. Addition. What? Yes. Addition.
Given two numbers, we add them by putting them one below the other and then adding digit-by-digit,

and taking care of carries, etc. It is a step-by-step method (in fact a for-loop). But why does it work? That
is, why is 17+ 13 when written down using the above algorithm gives the same answer as counting the total
number of sticks if I have 17 sticks in one hand and 13 sticks in the other? Have you wondered this?

Indeed, let us first formalize the computational problem. The first question is : how are these numbers
represented? One could use the decimal notation, where the number “17” is used to indicate the concept
of seventeen. Computers use the binary representation, and we will use that way of representing for these
notes. This is simply a choice we are making; all we say below (except for one or two exceptions) will
make sense even if you have the decimal representation in your head. Let us start by recalling the binary
representation.

Remark: An n-bit number a is represented by a bit-arraya a[0 ∶ n − 1] where each a[i] is 0 or 1, and

a =
n−1

∑
i=0

a[i] ⋅ 2i

So, for example, the number 37, whose binary representation is 100101 is represented by the bit-array
[1,0,1,0,0,1] which is the reverse of the binary representation. Only when we talk about numbers will
it be convenient to read arrays right to left.

aAs you can see, I have indexed the bit-arrays above from 0 instead of 1 (like I will usually do). Again, this is just a
convenience, and doesn’t change what we want to understand.

Now that we have refreshed our memory about bits and the binary representation, we can define the spec of
the addition problem.

ADDITION

Input: Two n-bit numbers a,b expressed as bit-arrays a[0 ∶ n − 1], b[0 ∶ n − 1].
Output: The number c = a + b expressed as a bit-array.
Size: The number of bits n.

Given the definition, we are now ready to actually spell out the algorithm we learned in grade school
as a pseudocode. However, we will need one “subroutine”. We will need the ability to add three bits.
More precisely, we will assume that we have access to a subroutine BIT-ADD which takes inputs three bits
(b1, b2, b3) and returns (c, s) where the number (c, s) interpreted as a binary number (that is 2c+s) is indeed
b1 + b2 + b3. See the supplement for a precise definition.

1



1: procedure ADD(a[0 ∶ n − 1], b[0 ∶ n − 1]): ▷ The two numbers are a and b

2: Initialize carry ← 0.
3: Initialize c[0 ∶ n] to all zeros ▷ c[0 ∶ n] will finally contain the sum
4: for i = 0 to n − 1 do:
5: (carry, c[i]) ← BIT-ADD(a[i], b[i], carry)

6: c[n] ← carry
7: return c

What are the elementary operations for this problem? We shall say that adding any three single bits
forms one elementary operation (that is, a call to BIT-ADD) which takes one unit of time. At some level this
choice is arbitrary but also natural. Very soon, we will use the “Big-Oh” notation very nicely to sweep these
distractions cosily under the rug to focus on the bigger picture. For today’s class, however, let this be our
definition.

With this definition, we can easily see that the number of BIT-ADDs is exactly n. Why? Because there
is a for-loop which runs for n iterations, and in each iteration there is exactly one call to BIT-ADD. We cast
this in the following theorem.

Theorem 1. The algorithm ADD has worst case running time TADD(n) = n.

b

Exercise: Can you modify the above pseudo-code to add an n-bit number with an m-bit number (where
n ≥m)? If T (n,m) is the worst-case running time, what is this as a function of n and m?

I don’t know about you, but it is not utterly trivial to me that the above algorithm, when input two
numbers a and b, actually returns a bit-array c which contains the sum a + b. That is, the number obtained
by incrementing a exactly b times. Once again, this is taught to us in grade-school, but why it works does
need a proof. We will not cover this in the course, but it is provided in the supplement to this lecture.

Note that the trivial algorithm that implements the definition of addition, has running time T (n) = 2n−1
as the number b can be as large as 2n−1. Thus, the above ADD algorithm is a remarkable algorithm. Indeed,
the “place-value-system” of numbers is one of the most remarkable inventions of human kind. If you doubt
this, think Roman numbers and how you would add them. Or perhaps consider multiplying them.

2 Multiplication

MULTIPLICATION

Input: n-bit number x, m-bit number y expressed as bit-arrays x[0 ∶ n − 1], y[0 ∶m − 1].
Output: The number z = x ⋅ y expressed as a bit-array.
Size: The number of bits n +m.

On to multiplication. Many grade-school method of multiplication “reduces” multiplying two n-bit/digit
numbers into adding n different numbers ranging from n + 1 to 2n + 1 bits. Today, we see a different
recursive algorithm for multiplication. Recursion is one essence of algorithm design which you should try
to get in your blood. It is also a great philosophy and applicable to most things in life.

2



Remark: Break the problem into smaller subproblems and let recursion take care of the smaller sub-
problems. Remember to solve the smallest subproblem.

Correctness of recursive algorithms often will follow from the design. Mathematical Induction is often
involved; good place to brush it up. Let us illustrate with multiplication. The proof of correctness can be
found in the supplement.

1: procedure MULT(x, y):
2: ▷ The two numbers are input as bit-arrays; x has n bits, y has m bits. n ≥m.
3: if y = 0 then: ▷ Base Case
4: return 0 ▷ An all zero bit-array

5: x′ ← (2x); y′ ← ⌊y/2⌋ ▷ How much time does this take? See remark below.
6: z ←MULT(x′, y′)
7: if y is even then:
8: return z
9: else:

10: return ADD(z, x) ▷ Time taken is the total number of bits in z and x.

Remark: “Hold on!,” I hear you say, “Above, you seem to have multiplied by 2 and divided by 2 and
taken floors. How do we do that?” Indeed. Note that when x is expressed as a bit-array, (2x) is just
a left-shift. That is, we take all of x and add a zero at the end. Similarly, ⌊y/2⌋ is a right-shift. That
is, we just drop the last bit. For simplicity, we assume this takes 0 time. These are “easy” operations
and today we won’t even count them in our running time. In decimal notation, this would correspond
to multiplying and dividing by 10.

Define T (n,m) to be the maximum time (that is, BIT-ADDs for now) MULT takes to multiply x, y
where x is an n-bit number and y is an m-bit number. Recall, we assume adding an n bit number with an
m bit number takes ≤ n time. We next write a recurrence inequality for T (n,m).

Base Case: When y = 0, let us say1 m = 0, and define T (n,0) = 0.

Now, let us figure out how much time each step takes.

• As remarked above, Line 5 doesn’t need any BIT-ADDS. So this costs 0.

• How much does Line 6 cost? This is important. It is a recursive call on the input x′ and y′. What is
the size of this input? We see that x′ = 2x has n+1 bits and y′ = ⌊y/2⌋ has m−1 bits. By the definition
of the worst case running time, we can therefore conclude that this step takes at most T (n+ 1,m− 1)
time. Observe that the pessimistic definition of worst-case-running-time really helped here. In sum,
this step costs T(n + 1,m − 1).

• Now, if y was even, this would be the end of the algorithm.
1Ok, so 0 is 1 bit, but let’s just say the number 0 requires 0-bits.

3



• However, we are in the worst-case land, and y could be odd. In this case we need to add z and x. Now
we use the fact that z ≤ x ⋅ y has at most (n +m) bits (see Fact 1 below). Therefore, the operation
ADD(z, x) takes at most (n +m) time by Theorem 1.

Fact 1. If x has n bits and y are m bit integers, then x ⋅ y has at most (n +m) bits.

Proof. Since x is an n-bit integer, we get x ≤ 2n − 1. Similarly, y ≤ 2m − 1. Therefore, x ⋅ y ≤ (2n − 1) ⋅
(2m − 1) < 2n+m − 1, where we have used 2n + 2m − 1 > 1. Therefore, xy has at most (n +m) bits.

Putting all these together, we see that the running time T (n,m) for MULT can be captured by the following
recurrence inequality.

T (n,0) = 0

T (n,m) ≤ T (n + 1,m − 1) + (n +m) ∀n,m > 0 (1)

Recurrence Inequalities: The heart of analyzing running times of recursive algorithms. Equation (1)
is called a recurrence inequality; it is expressing the running time T (n,m) as a function 3n plus T () of
something “smaller”. Why is (n + 1,m − 1) smaller than (n,m)? Because the lesser of the two numbers is
becoming strictly smaller.

Recurrence inequalities form the bedrock of analyzing the efficiency of recursive algorithms, and in this
class we will see how to solve a general class of them. The general way I like to think of it is the following
picture (shown in Figure 1), which I call the kitty method2.

Once we know the answer from the picture above, we can formally prove it as well. This is shown
below.

Theorem 2. MULT takes T (n,m) ≤m(n+m) time (i.e. BIT-ADDs/elementary operations) to multiply
an n-bit number with an m-bit number (n ≥m).

Proof. See Figure 1 to see how to “open up” the brackets. That is,

T (n,m) ≤ T (n + 1,m − 1) + (n +m)

≤ T (n + 2,m − 2) + (n +m) + (n +m)

≤ T (n + 3,m − 3) + (n +m) + (n +m) + (n +m)

⋮

≤ T (n +m,0) +m(n +m)

Now, we use that T (n+m,0) = 0, the base case which we knew how to handle. This proves the theorem.

3 Division

DIVISION

Input: n-bit number x, m-bit number y expressed as bit-arrays x[0 ∶ n − 1], y[0 ∶m − 1].

2No one else (except students who have taken the class with me in the past) calls it by this name.

4



(n,m)
Kitty

(n+1,m-1)

(n+m)

(n+2,m-2)

(n+m)

(n+m,0)

(n+m)

…

(n+m)

m(n+m)= 0

…

Figure 1: The circles contain the various sizes. As we go down the sizes become smaller and smaller till we
reach a small enough size for which we can figure out the running time directly. In particular, when the size
becomes 0, the running time becomes 0. However, breaking the problem is not free. To break every circle
you need to pay some in the kitty. This is given by the extra terms other than the T (⋅)’s. In this case, each
break “costs” (n +m). In the end, we just add everything in the kitty to get the final answer.

Output: The quotient-remainder pair (q, r) such that x = qy + r where r < y.
Size: The number of bits n +m.

Our final course of the day is integer division. We want to take input two numbers x, y, and return the
quotient and remainder obtained when x is divided by y. That is, we want to find non-negative integers
(q, r) such that x = qy + r and r < y.

Once again, we define a recursive algorithm to do the same. First we identify the base cases. If x < y,
then we know that the quotient is 0 and remainder is x. If x = y, then the quotient is 1 and remainder is 0.
Now suppose x > y.

Case 1. x = 2k is even. Then if (q′, r′) is what we obtain recursively when we divide the smaller number
k by y, that is, k = q′y + r′, then x = 2q′ ⋅ y + 2r′. Therefore, we should return (2q′,2r′), except 2r′ may be
bigger than y. In which case, we should return (2q′ + 1,2r′ − y). This suffices since r′ < y′ and so 2r′ < 2y
and so 2r′ − y < y.

Case 2. x = 2k + 1 is odd. Again, suppose (q′, r′) is obtained recursively when we divide k by y. Then
we get x = 2k + 1 = 2q′y + 2r′ + 1. Once again we repeat the same as above.

5



1: procedure DIVIDE(x, y):
2: ▷ The two numbers are input as bit-arrays; x has n bits, y has m bits. n ≥m.
3: ▷ Returns (q, r) where x = qy + r and 0 ≤ r < y.
4: if x < y then:
5: return (0, x)

6: if x = y then:
7: return (1,0)

8: x′ ← ⌊x/2⌋ ▷ Obtained by right shifts
9: (q′, r′) ←DIVIDE(x′, y)

10: q ← 2q′; r ← 2r′ ▷ Obtained by left shifts
11: if x is odd then:
12: r ← r + 1 ▷ Obtained by ADD(r,1).

13: if r ≥ y then:
14: q ← q + 1 ▷ Obtained by ADD(q,1).
15: r ← r − y ▷ Subtraction is just addition with the “complement”

16: return (q, r).

Once again, let us work to figure out the recurrence inequality for the running time. Let T (n,m) be the time
taken to divide an n-bit number by an m-bit number. Once again, time for us is the number of BIT-ADDs.

• Let’s first understand the base cases. Line 5 and Line 7 take 0 time. Thus, we get T (n,m) = 0 if
n <m. Note, we cannot say n =m for x and y can both be m bits big and yet x > y.

• Line 8 and Line 10 also takes no BIT-ADDs. This is for the same reason as in MULT.

• The recursive call in Line 9 takes time at most T (n − 1,m). This is because x′ has n − 1 bits, and the
definition of worst-case runtime.

• Now consider Line 12 and Line 14. Note that in both cases we are adding 1 to an even number (see
Line 10), that is, a number whose last bit is 0. Thus, one needs only one BIT-ADD to increment an
even number by one. Thus, these steps cost 2 BIT-ADDs.

• Line 15 is the “time-taking” step of subtraction. How does one subtract? As you can see in the
supplement, subtraction is simply an addition3 with “complementing”, the time (or number of BIT-
ADDs) is the same as to add. And thus, since both y and r have ≤ (m+ 1) bits (note r ≤ 2y), this step
takes m + 1 time.

Therefore, we get the following recurrence for DIVIDE.

T (n,m) = 0 if n <m

T (n,m) ≤ T (n − 1,m) + (m + 3) (2)

3If you have never seen this before, then I recommend going and reading this in the supplement.

6



Theorem 3. DIVIDE takes T (n,m) ≤ (m+3)⋅(n−m+1) time (i.e. BIT-ADDs/elementary operations)
to divide an n-bit number by an m-bit number where n ≥m.

Proof. Once again, this can be solved by the kitty method or “opening up the brackets” as follows:

T (n,m) ≤ T (n − 1,m) + (m + 3)

≤ T (n − 2,m) + (m + 3) + (m + 3)

⋮

≤ T (m − 1,m) + (m + 3) ⋅ (n −m + 1)

The proof completes by noting T (m − 1,m) = 0.

Corollary 1. If n = m + c, that is, x has only c more bits than y, then DIVIDE takes ≤ Cn time for some
constant C dependent on c.

7


	Addition
	Multiplication
	Division

