
CS31 (Algorithms), Spring 2020 : Lecture 11
Date:

Topic: Graph Algorithms 2: Applications of DFS
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.

Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

1 Applications of DFS

We already saw two applications of DFS in the last lecture: the REACHABLE? problem and the CYCLE?
problem. In this lecture, we see two more applications of DFS on directed graphs. The first application
actually gives a way to “order” all nodes in a directed acyclic graph (DAG). This is called the topological
order. This itself has many applications, which your problem sets explore. The second application is to
figuring out whether a directed graph is strongly connected or not.

1.1 Topological Ordering of DAGs

Throughout this subsection, G is a directed acyclic graph (DAG). Recall from the previous lecture, this
means that if we run DFS on G, there are no back edges. A topological ordering of (the vertices of) a DAG
is an ordering σ[1 ∶ n] of the vertices such that for any i < j, there is no edge from σ[j] to σ[i]. That is, if
we write down the vertices from left to right in the σ order, then all edges go from left to right. If one thinks
of an edge (u, v) as v being “bigger” than u, then the topological ordering is a linearization of the graph
according to this (partial) order. Of course, not every pair of vertices may be comparable.

Remark: Note that the first vertex v in the topological order must have deg−(v) = 0. There is no
vertex to its left to “send” an edge to it. Such vertices are called sources. Similarly, the last vertex v in
the topological order must have deg+(v) = 0. There is no vertex to its right to which it can “send” an
edge. Such vertices are called sinks.

Does a topological order always exist of a DAG? Before moving on, think a bit about this question. (Hint:
maybe look at the question of whether DAGs have sources and sinks. Then consider removing them...)

TOPOLOGICAL ORDERING

Input: Directed Acyclic Graph G.
Output: A topological ordering of G.

If you haven’t been able to puzzle out whether a topological order exists, then you will probably appreciate
the power of DFS.

Lemma 1. Consider running DFS in any arbitrary order on the DAGG. Let σ be the ordering of the vertices
in decreasing order of last[v]. Then, σ is a topological order.

Proof. To show σ is a topological order, we need to show there is no edge going from right to left. To this
end, pick two vertices x and y such that σ[x] < σ[y]. We need to show (y, x) is not an edge. Suppose, for
contradiction’s sake, it is. Now, σ[x] < σ[y] implies, by our definition, last[y] < last[x]. The edge property
now implies that first[x] < first[y]. Why? If not, that is, if first[y] < first[x], then since (y, x) is an edge

1



the edge property would imply last[x] < last[y]. But the reverse is true. Therefore, first[x] < first[y]. In
sum, we have first[x] < first[y] < last[y] < last[x]. The Nested Interval Property now tells us y must be a
descendant of x, that is, (y, x) is a back-edge. This contradicts that G is acyclic.

Theorem 1. TOPOLOGICAL ORDERING of any DAG G can be found in O(n +m) time.

Proof. There is one extra thing needed to argue about following the previous lemma. We need the (decreas-
ing) sorted order of lasts; how do we get that in O(n +m) time. Two answers.

One, the last[v]’s are integers between 1 and 2n; so we can sort in O(n) time using Count-Sort. Two,
and this is less modular, but we can read out the numbers in increasing order of last[v] as DFS as being
run; after all, it is precisely the order in which the last[v]’s are set. The topological order is the reverse of
that.

One application of the topological ordering is to decide whether there is a path in a DAG which contains
all the vertices: simply take the topological ordering, and check if that is a path. If it is, we are done. Else, I
claim there cannot exist such a path. If there were, then one of the edges of that path would be in the “wrong
direction.” I leave the details for you to figure out.

1.2 Strongly Connected Components (SCCs) using DFS

We now see that the strongly connected components of a graph G can be found in linear O(n +m) time.
This is a truly surprising algorithm which really illustrates the power of DFS. Let’s try to first sketch the
main ideas behind the algorithm, and then subsequently give the final description and analysis. To do so,
consider the graph in Figure 1.

1

2 3

4

5 6

7

8 9
C2 C3

C1

Figure 1: Illustrative example for SCC.

In the graph on the left, there are three strongly connected components marked in light blue circles. The
graph on the right is one whose vertices are these three components, and we have an edge between two
components (for instance from C1 to C2) if and only if there is an edge (u, v) in the original graph with
u ∈ C1 and v ∈ C2. Note there could be, and in this example there are, multiple such edges. We require that
there be at least one. In general, given a graph G as on the left, then the graph on the right is called Gscc;
note we don’t have this graph up front but is useful for analysis and designing the algorithm.

2



Claim 1. Gscc is a DAG.

Proof. Suppose not, and suppose there was a cycle (C1,C2, . . . ,Ck,C1) in Gscc. This means there are
vertices xi, yi in Ci (possibly xi and yi are the same) such that (xi, yi+1) is an edge in G, and (xk, y1) is
also an edge inG. But then, we argue next,C1∪⋯∪Ck should have been one strongly connected component,
which would be a contradiction. Take any two vertices u and v in the union. Say u ∈ Ci and v ∈ Cj where
i ≤ j without loss of generality (otherwise, we swap names). We now show a path from u to v. First, we go
from u to xi which is possible since Ci is strongly connected, then we take the (xi, yi+1) edge to yi+1, and
from there to xi+1 (since Ci+1 is strongly connected), and so on and so forth till we reach yj , upon reaching
which, we take the path from yj to v (which again exists since Cj is strongly connected).

Before we move on to discovering the SCCs, let us see why the algorithm for undirected graphs is not
enough. Recall what we did for undirected graphs; we ran DFS on G in any arbitrary order and returned
the connected components of the forest. Why doesn’t it work? Well, in the graph in Figure 1 consider what
happens when we run DFS from the vertex 1. You see that all the vertices are reachable from 1 and thus
end up in the tree rooted at 1. The resulting vertices are not strongly connected. To stress why this is not an
issue in undirected graphs note that in undirected graphs if there is a path from a vertex 1 to a set of vertices
S, then there is a path from any vertex in S to 1 as well. This is patently false in directed graphs.
An Encouraging Idea. Suppose that in the graph in Figure 1, we ran DFS from vertex number 9. Then,
we would definitely discover all the vertices that 9 can reach. But these are precisely the ones in C3, the
strongly connected component connecting 9. Why is this? This is because, there is no edge which starts
from inside C3 and goes outside. That is, because C3 is a sink component of Gscc. But this is wonderful;
there is some vertex from which if we start DFS we get at least one strongly connected component. Let us
make this (finding one strongly connected component) our goal for now.

From our understanding of topological ordering in DAGs, we know that the vertex with the smallest
last[v] is a sink vertex in a DAG. Perhaps, we could conjecture something similar for a general graph: in
any graph G and any DFS run, the vertex with the smallest last[v] must lie in a sink component of Gscc.
If that is the case, then we could get what we want. Unfortunately, this is not true. Consider the graph in
Figure 1 again, with DFS being run in the {1,2, . . . ,9} order, and the adjacency lists also being visited in
this order. We see that vertex 3 has the smallest last[], and indeed 3 lies in a source component of Gscc.

Remark: A philosophical interlude. In research, we often think we have a good understanding
of objects, and this leads us to make some conjectures. Just like we did above. And often they are
wrong. I’ll not lie – disappointment is usually the first response. But what really defines a researcher is
resilience. Counterexamples are the world’s ways of telling us, “Your understanding was incomplete.
Refine them. Think harder.” And when we do get back to the drawing board, or square one, the world
often rewards us with epiphanies.

Epiphany 1. Although the vertex with the smallest last[v] may not be in a SINK component of Gscc, it
is in fact true that the vertex with the largest last[v] does indeed lie in the SOURCE component of Gscc.
Again going back to the example in Gscc, we see that the vertex 1 has the largest last, and it is in the source
component C1 of Gscc.
In fact, more is true. For any component C ∈ Gscc, define

f(C) =max
v∈C

last[v]

That is, f(C) is the largest last in that component.

3



Lemma 2. If (Ci,Cj) is an edge in Gscc, then f(Ci) > f(Cj).

Before we prove the above lemma, let us see why it implies that the vertex with the largest last must
lie in a source component of Gscc. Suppose x is the vertex with the largest last, and suppose it lies in
component Cj . Clearly, f(Cj) = last[x], for x is the largest last vertex. Now if Cj were not a source
component, there would be some component Ci with (Ci,Cj) an edge in Gscc. The above lemma would
imply f(Ci) > f(Cj) = last[x]. That is, there is a vertex y ∈ Ci with last[y] > last[x]. That contradicts the
choice of x. Thus, x must lie in a source component. Let us now prove the lemma.

Proof. First we make a claim about strongly connected components.

Claim 2. For any strongly connected component C if x ∈ C has the largest last, then it also has the smallest
first. In particular, x’s interval contains all the intervals of every other vertex in C.

Proof. Suppose not. Suppose y ∈ C, y ≠ x has the smallest first. Since C is strongly connected, there is
a path from y to x. y has the smallest first among all vertices in this path, so by the path property, it must
have the the largest last among all vertices in this path. In particular, last[y] > last[x]. Contradiction.

The proof of the lemma is as follows. Let x be the vertex in Ci with the largest last and y be the vertex
in Cj with the largest last. Thus, f(Ci) = last[x] and f(Cj) = last[y]. For the sake of contradiction,
suppose last[x] < last[y]. By the Nested Interval Property, either (a) first[y] < first[x], that is, x’s interval
is completely contained in y’s interval, or (b) last[x] < first[y], that is x’s interval is disjoint and lies before
y’s interval.

We will reach a contradiction in both cases. Case (a) is easy: if x’s interval is completely contained in
y’s interval, then there is a path from y to x in the DFS forest. In particular, that would imply an edge from
Cj to Ci in the Gscc contradicting the DAG nature of Gscc.

In Case (b), x’s interval finishes before y’s interval. By the claim above, this means that the interval
of every vertex in Ci finishes before the interval of any vertex in Cj starts. Now since (Ci,Cj) is an edge,
there is some u ∈ Ci and v ∈ Cj such that (u, v) is an edge in G. From the claim, we see first[u] < last[u] <
first[v] < last[v]; this contradicts the edge property.

So, the above lemma gives us a way to recognize a vertex in the source component of Gscc. But we
needed a vertex in the sink component of Gscc. How are we going to get that? A second epiphany answers
this.

Epiphany 2. Let Grev be the graph where all edges of G have been reversed. Observe that the strongly
connected components of Grev are the precisely the same as those in G, and that (Grev)

scc
= (Gscc

)rev. In
other words, the source components of (G)

scc are precisely the sink components of (Grev)
scc. Therefore, if

we run DFS onG and look at the vertex with the largest last[v] that is guaranteed to be in the sink component
of (Grev)

scc. Which will allow us to find the strongly connected components of (Grev). Which is the same
as the strongly connected components of G. Done!

Strongly Connected Component Algorithm. We now state the full algorithm. The algorithm takes input
G and returns the components of Gscc. Furthermore, they are returned in the topological order in Gscc. This
fact is also useful (see a UGP problem regarding this).

4



1: procedure STRONCONNCOMP(G):
2: ▷ Returns the strongly connected components of G
3: ▷ The order in which it is returned is the Top. Ord. of Gscc.
4: Run DFS(G,{1,2, . . . , n}) to get last[v] for every vertex.
5: π be the decreasing order of last[v]’s. ▷ Can be found in O(n) time a la Top. Ord.
6: Obtain Grev. ▷ This takes O(n +m) time.
7: Run DFS(Grev, π) and return the connected components of the forest F .

Theorem 2. The STRONGCOMMCOMP algorithm returns the strongly connected components of G in
a topological order of Gscc, in O(n +m) time.

Proof. The running time is easiest to figure out. There are two DFSs which take O(n+m) time. One needs
to sort the last in decreasing order. As in TOPOLOGICAL ORDERING, this can be done in O(n) time. What
is interesting is the correctness of the algorithm.

Let C1, . . . ,Ck be the components of Gscc. We claim that the components of the final forest F returned
in Line 7 are these components returned in topological order of Gscc. More precisely, at the end of Line 7,
the variable fcomp contains the number of strongly connected components, that is, k, and for every 1 ≤ t ≤
fcomp, the vertices Ct ∶= {v ∶ Fcomp[v] = t} forms the tth strongly connected component, and the ordering
C1, . . . ,Ck is the topological order of Gscc.

The discussion before the description of the algorithm indicates that C1 is a sink component of (Grev)
scc

(to remind, the first vertex in π must lie in the source component of Gscc which is the sink component of
(Grev)

scc
). That is, C1 is a true strongly connected component, and being the sink component of (Grev)

scc

it is indeed a source component of Gscc. What about the remaining Ci’s?
To argue about them, we assume the statement is true for the first i components returned in Line 7.

That is, there are indeed the first i components in some topological order of Gscc. Next, we argue about the
(i + 1)th component.

Note, by the way DFS works, that the vertex v picked as root at the (i + 1)th step of Line 7 is the
first vertex in π not in C1 ∪ . . . ∪ Ci. Since π is the decreasing order of lasts obtained in Line 4, we get
that last[v] = maxu∉C1,⋅,Ci last[u]. Suppose v lies in component Cj of Gscc. We now claim that Lemma 2
implies Cj is a source component in Gscc

∖ (C1 ∪⋯ ∪Ci). Suppose not: then there is some (Ck,Cj) edge
in Gscc with k > i. From the lemma, we get that f(Ck) > f(Cj) (otherwise the Lemma is violated). But
this contradicts the choice of v. Therefore Cj is a source component of Gscc

∖ (C1 ∪ ⋯ ∪ Ci). That is, Cj

is a sink component of (Grev)
scc

∖ (C1 ∪⋯ ∪Ci). Now notice that the DFS run from vertex v on Grev will
only discover vertices in Cj as it is a sink component in (Grev)

scc
∖(C1∪⋯∪Ci). That is, the (i+1)th step

discovers a component Ci+1 which is a sink component of (Grev)
scc

∖ (C1 ∪⋯ ∪Ci). That is, it is a source
component of Gscc

∖ (C1 ∪⋯∪Ci). But that implies Ci+1 is the next component in the topological order of
Gscc after C1, . . . ,Ci.

5


	Applications of DFS
	Topological Ordering of DAGs
	Strongly Connected Components (SCCs) using DFS


