
CS31 (Algorithms), Spring 2020 : Lecture 12
Date:

Topic: Graph Algorithms 3: BFS, Dijkstra
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.

Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

In this lecture and next, we look at shortest paths in graphs. Graphs will now have costs on edges and
shortest paths will be with respect to these costs. We begin with the simplest case: when all the costs are 1.

1 Breadth First Search

In DFS from a vertex, that is the algorithm DFS(G,v), we explored unvisited neighbors but as soon as we
discovered one such vertex we recursively started our search from that vertex again. In some sense, the
algorithm tries to go as “deep” as possible and then backtracks if it can’t dig deeper.

Breadth First Search, or BFS, takes the broader approach. Starting from a vertex, it first traverses all its
unvisited neighbors putting them in a queue. Subsequently, we visit all neighbors of these neighbors, and so
on and so forth. The plus side of BFS is that it seems to reach a vertex “quickly” (and we make this precise
in a bit) while DFS could meander and perambulate before reaching any particular vertex. The description
of BFS I give below is a bit more “complicated” than usual definitions; but it will be readily generalize to
the setting with costs on edges.

The algorithm takes input a graph (directed or undirected) G and a “source” vertex s. At the end of it,
it assigns a distance label dist[v] to every vertex v ∈ V . dist[v] indicates the length of the shortest path
obtained from s to v so far; if no such path found, this is set to ∞. Thus, initially dist[s] = 0 and all other
dists are ∞. Subsequently, everytime a vertex v is being processed, it updates the distance label of every
out-neighbor u whose dist[u] > dist[v] + 1 to just dist[v] + 1. If u’s distance label is changed, it is put in
the queue. This update step is crucial to all known shortest path algorithms. So much so, that it is worth
thinking of it is a subroutine.

1: procedure BFS(G,s):
2: ▷ Returns a distance label to every vertex.
3: ▷ Every vertex not s also has a pointer parent to another vertex.
4: dist[s]← 0; dist[v]←∞ otherwise.
5: parent[v]← � for all v.
6: Assign queue Q initialized to s. ▷ FIFO Queue
7: while Q is not empty do:
8: v = Q.remove(). ▷ The first entry in Q

9: for all neighbors u of v do: ▷ Update (v, u).
10: if (dist[u] > dist[v] + 1) then: ▷ dist[u] too large.
11: ▷ For BFS, in fact, dist[u] =∞.
12: Set dist[u] = dist[v] + 1. ▷ Update dist[u]
13: Q.add(u). ▷ Since u’s distance label was modified, put it in the Q

14: Set parent[u] = v.

We start by making trivial but important observations.

1



Observation 1. dist[v] of any vertex can never increase over time. Also, dist[v] is a non-negative integer
(unless it is infinity). Finally, dist[v] = dist[parent[v]] + 1 or ∞.

Proof. (Sketch) We modify dist[u] to dist[v] + 1 only if it was bigger than dist[v] + 1. Furthermore, it is
set by adding 1 to dist[v]. If dist[v] was an integer, then so is dist[u]. The last line follows from Line 12
and Line 14

Remark: The above observation gives the following intuition about the distance labels dist[v] which
is important to have. Note that by repeatedly taking parents, we get that the reverse of the path
(v,parent[v],parent[parent[v]], . . . , s) is a path from s to v of length precisely dist[v]. Therefore,
at any point of time, dist[v] is an upper bound on the shortest length path from s to v. And every
update step on an edge (v, u) possibly updates the distance label on the vertex u.

Lemma 1. (Monotonicity Lemma.) Fix a particular while loop, and let Q = [u1, . . . , uk] be the queue
content just before the beginning of the loop. Then dist[u1] ≤ dist[u2] ≤ ⋯ ≤ dist[uk] ≤ dist[u1] + 1.

Proof. The proof is by induction over the while loops. At the beginning of the first while loop, Q = [s] and
the lemma is vacuously true. Otherwise, fix a while loop, and let Q = [u1, . . . , uk], and let the lemma be
true right now. We now show it remains true after this loop.

Let us see what the while loop does. First, it removes the vertex u1 from Q. It will then add every
neighbor x with current dist[x] > dist[u1]+1, and upon adding, the distances become dist[x] = dist[u1]+1.
Let these neighbors be x1, . . . , xr (note r could be 0 and there could be no such neighbors). After this while
loop is run, the contents of the Q is precisely [u2, u3, . . . , uk, x1, . . . , xr]. By induction, we know dist[u2] ≤
. . . ≤ dist[uk]. Furthermore, since dist[uk] ≤ dist[u1] + 1 (by induction), we see dist[uk] ≤ dist[xi] for
all 1 ≤ i ≤ r. Finally, dist[xi] = dist[u1] + 1 ≤ dist[u2] + 1. And thus, we get dist[u2] ≤ . . . ≤ dist[uk] ≤
dist[x1] ≤ . . . ≤ dist[xr] ≤ dist[u2] + 1.

The above lemma has a bunch of very useful corollaries.

Corollary 1. In the BFS algorithm, a vertex v never enters the queue more than once.

Proof. Suppose not, and suppose v is the first vertex which enters Q twice. Let u be the first vertex which
added v to Q the first time, and let x be the second vertex which added v the second time into Q. When u
added v to Q, the algorithm set dist[v] = dist[u] + 1. Now consider the time x is adding v again to Q. At
this point, we must have dist[v] > dist[x] + 1. That is, dist[u] > dist[x]. But since u was popped out of the
queue before x, the previous monotonicity lemma tells us dist[x] ≥ dist[u]. Contradiction. Therefore, no
vertex enters the Q twice.

Corollary 2 (BFS runtime). BFS(G,s) runs in O(n +m) time.

Proof. Every while loop pops a vertex v out and then scans all its out-neighbors. That is, this while loop
takes O(deg+(v)) time. By Corollary 1, the vertex v is processed at most once. Thus, the time taken is
∑v∈V O(deg+(v)) = O(n +m) (as in DFS).

Now comes the main lemma which connects shortest paths and BFS. I would like to stress that the next
lemma doesn’t need any of the previous lemmas, but holds as long as the BFS terminates to give distance
labels.

2



Lemma 2 (Shortest Path Lemma). Let p = (s = x0, x1, . . . , xk) be any path in the graph. Then
dist[xi] ≤ i for all 0 ≤ i ≤ k.

Proof. Suppose not, and let i be the smallest index for which this is false (note that the statement is true for
0 and therefore i ≥ 1). Thus, dist[xi−1] ≤ (i − 1) but dist[xi] > i. Now consider the time xi−1 is removed
from the Q (since its dist is not infinity, it must have entered Q and thus must have left). In this while loop,
the for-loop will check if dist[xi] > dist[xi−1] + 1 ≥ i. Now, dist[xi] > i at the end of the algorithm, and
so by Observation 1, dist[xi] > i in this while loop as well. Therefore, the “if” statement will succeed, and
then it would set dist[xi] = dist[xi−1] + 1 ≤ i. But this contradicts that dist[xi] > i in the end.

Theorem 1. Using BFS once can find the shortest path length from a vertex s to every other reachable
vertex v in O(n +m) time.

Proof. We claim dist[v] is indeed the shortest path length from s to v. Lemma 2 shows that dist[v] is at
most the shortest path length. All that remains to show is that there is a path from s to v of exactly this
length. Indeed, it is the reverse of (v,parent[v],parent[parent[v]], . . . , s).

The Shortest Path Tree. Note that BFS(G,s) returns a tree rooted at s defined by the parents. More
precisely, consider the graph on all vertices v with dist[v] < ∞ where we add the edges (parent(v), v).
This tree is called the shortest path tree. For every vertex v which is reachable from s, as Lemma 2 shows,
the unique path from s to v in the tree is a shortest path.

“Weighted” BFS. We now want to generalize to the case when edges of the graphs have weights or costs.
That is, every edge (u, v) has a cost c(u, v). Imagine for now these costs are non-negative integers. How
would we generalize the above algorithm? Well, one “obvious” generalization seems the following. The
changes are marked in red.

1: procedure WBFS(G,s):
2: dist[s] = 0; dist[v] =∞ otherwise.
3: parent[v] = � for all v ≠ s.
4: Assign queue Q initialized to s.
5: while Q is not empty do:
6: v = Q.remove().
7: for all neighbors u of v do:
8: if (dist[u] > dist[v] + c(v, u)) then:
9: Set dist[u] = dist[v] + c(v, u).

10: Q.add(u).
11: Set parent[u] = v.

What’s “wrong” with the above algorithm? Well, first let us show what is “right” about the algorithm. The
next lemma shows that if the above algorithm terminates, then it gives the correct answer in that the dist
labels are lower bounds on the shortest path. First we begin by noting that Observation 1 still holds (check
this).

3



Lemma 3 (Shortest Path Lemma in Weighted Graphs). Suppose the algorithm WBFS terminates with
distance labels dist[v] on every vertex. Let p = (s = x0, x1, . . . , xk) be any path in the graph. Then
dist[xi] ≤ ∑i−1

j=0 c(xj , xj+1) for all i, that is, the cost of the path from s to i. This is true even if the costs
are negative.

Proof. The proof is almost a rewriting of the proof of Lemma 2.
For brevity, let us use Ci to denote the cost ∑i−1

j=0 c(xj , xj+1). We need to show dist[xi] ≤ Ci for all
i. Suppose not, and let i be the smallest index for which this is false (note it is true for i = 0.) Thus,
dist[xi−1] ≤ Ci−1 but dist[xi] > Ci. Since dist[xi−1] is finite, its distance label was set, and thus xi−1 was
added to the Q at least once. Now consider the time xi−1 is removed from the Q for the last time (we are
not claiming any more that every vertex enters Q at most once). In this while loop, the for-loop will check if
dist[xi] > dist[xi−1]+c(xi−1, xi) ≥ Ci−1+c(xi−1, xi) = Ci. Now, we have supposed that dist[xi] > Ci at the
end of the algorithm, and since distances don’t increase, dist[xi] > Ci at this while loop as well. Therefore,
the “if” statement will succeed, and then it would set dist[xi] = dist[xi−1]+c(xi−1, xi) ≤ Ci−1+c(xi−1, xi) =
Ci. But this contradicts that dist[xi] > Ci in the end.

Ok, but that if is a big if. Look at the algorithm WBFS again: it has a while loop. Whenever you
see a while loop, one needs to be concerned about the running time. For BFS, we took care of this first
(Corollary 2). What about the WBFS problem? Before reading the next paragraph, take some time to think
about what can you say about the running time of WBFS. Can it do an infinite loop? Why can’t we say that
WBFS runs in O(n +m) time as in Corollary 2? Well, that proof needed Corollary 1. Can you see why
Corollary 1 fails for WBFS? Implement this algorithm up and see if it terminates on graphs of your choice.

Lemma 4. If all the costs are non-negative, then the algorithm WBFS terminates.

Proof. To show an algorithm with a while loop terminates, one usual way is to find a “measure” which
keeps decreasing as the while loop proceeds. What is one possibility here? Well, we already know that
the distance labels cannot increase. So, let us use D to denote ∑v dist[v] for all vertices v. Now if some
vertex has dist[v] =∞, we have D =∞. To take care of this, let’s just use C = maxu,v c(u, v) and initially
set dist[v] = (n − 1)C + 1 since the total cost of any path is ≤ (n − 1)C. Therefore, in the beginning,
D ≤ (n−1)2C. Now we see that in every while loop either the size of the Q decreases, or D decreases by at
least 1. This follows from Observation 1; if we change the distance, then we drop it by at least 1. Therefore,
in O(n2C) while loops the algorithm does terminate.

Remark: Can you come up with an example of a graph with non-negative costs where the above
algorithm does take longer than O(n +m) time? This is not trivial. One way to find would be to figure
out why Corollary 1 was false, etc. That is, the same vertex can enter the Q multiple times. After seeing
the example, does it suggest a way to improve the above algo?

Remark: If the costs are allowed to be negative integers, then can you come up with an example where
the algorithm does not terminate?

4



2 Dijkstra’s Algorithm

SHORTEST PATH

Input: Graph G = (V,E). Costs c(e) > 0 on every edge e ∈ E. Source vertex s.
Output: Shortest Paths to every vertex v ∈ V .

In this section, we show that one can make the algorithm described above “efficient” by not putting every
eligible neighbor of the vertex in consideration into the queue. This is the famous DIJKSTRA’s algorithm
named after its inventor, Edsger Dijkstra. There are two differences to WBFS. One, by design it sets the
distance label at most once. This is done by updating the distance label only over neighbors which have not
their distance labels set. Two, and this is key, it only adds one vertex to the queue, but which one is crucial:
it picks the one with the smallest dist[v].

1: procedure DIJKSTRA(G,s):
2: ▷ Returns a distance label to every vertex. Every vertex not s also has a pointer parent to

another vertex.
3: dist[s] = 0; dist[v] =∞ otherwise.
4: parent[v] = � for all v ≠ s.
5: Initialize Q = s.
6: Initialize R = ∅. ▷ R will be the “reached” vertices whose dist[v]’s have been set.
7: while Q is not empty do:
8: v ← Q.remove()
9: R ← R + v

10: for all neighbors u of v not in R do: ▷ The distance labels set for only vertices outside R

11: if (dist[u] > dist[v] + c(v, u)) then:
12: Set dist[u]← dist[v] + c(v, u).
13: Set parent[u]← v.
14: Find u with minimum dist[u] among vertices not in R.
15: ▷ This is the key time improvement step.
16: Q.add(u).

Remark: As one can see, the Q is not even needed above. Indeed, the typical exposition of DIJKSTRA

(which you may have seen in CS10) contains only the R.

Lemma 5 (Termination). The While loop in DIJKSTRA runs for at most n + 1 iterations.

Proof. At each while-loop iteration, a vertex from Q is deleted, added into R, and a vertex not in R, if any,
is added. The size of Q remains 1 till R becomes the whole vertex set, in which case the Q becomes ∅ and
the while loop terminates. Since the size of R precisely increases by one, and the while loop terminates after
≤ n + 1 iterations.

Lemma 6. Once a vertex x enters R its distance label dist and parent is never changed again. Furthermore,
dist[x] = dist[parent[x]] + c(parent[x], x).

Proof. This is made sure by Line 10 since it updates distances, if at all, only for vertices not in R.

5



Lemma 7 (Monotonicity Lemma). Let the order in which vertices are added to R be (v0, v1, . . . , vn).
Note that v0 = s itself. Then,

dist[v0] ≤ dist[v1] ≤ ⋯ ≤ dist[vn]

where dist[] are the distance labels at the end of the algorithm.

Proof. Suppose not, and let vi+1 be the first vertex for which this violated. That is, dist[vi+1] < dist[vi].
Since vi was added to R before vi+1, Line 14 implies the time when vi is added to R, we have dist[vi] ≤
dist[vi+1]. Also note that by definition, vi+1 is the vertex added in the next iteration.

Now, if (vi, vi+1) is not an edge then after vi enters Q, dist[vi+1] is not modified in that for-loop. Thus
when vi+1 is added to Q we still have dist[vi] ≤ dist[vi+1]. On the other hand, if (vi, vi+1) ∈ E, then after
the for-loop dist[vi+1] can only “go down” to dist[vi]+ c(vi, vi+1). Since the costs are non-negative, this is
also ≥ dist[vi]. Thus, at this point dist[vi+1] ≥ dist[vi]. Since dist labels are not modified once they are set,
we get a contradiction.

Lemma 8 (Shortest Path Lemma). Let p = (s = x0, x1, . . . , xk) be any path. Let pi be the sub-path
(x0, . . . , xi). Then, dist[xi] ≤ c(pi), the cost of the path pi, that is c(pi) = ∑i−1

j=0 c(xj , xj−1).

Proof. Suppose not and choose the smallest i for which dist[xi] > c(pi). So dist[xi−1] ≤ c(pi−1). Note
that c(pi−1) = c(pi) − c(xi−1, xi) < c(pi) since the costs are non-negative. Thus, dist[xi−1] < dist[xi].
Therefore, by Lemma 7, we get that xi−1 enters R before xi. But then the for-loop for xi−1 would set
dist[xi] ≤ dist[xi−1] + c(xi−1, xi) ≤ c(pi−1) + c(xi−1, xi) = c(p). Contradiction.

Lemma 9. DIJKSTRA algorithm can be implemented in O(m + n logn) time.

Proof. This is a poster child application of priority queues. The data we wish to store as key-value pairs
have keys given by the vertex identities and value of vertex v is dist[v]. Line 14 is the EXTRACT-MIN

operation. Line 12 is a DECREASE-VAL operation. The number of times Line 14 is implemented is at most
n + 1 since the while loop runs for at most n + 1 times. The number of times Line 12 is implemented is at
most the number of edges; each edge (v, u) appears when v enters Q and this happens at most once.

If we use the usual array implementation (see the file graph_basics.pdf), then the running time is
O(m+n2). If we use the heap implementation, then the running time is O((m+n) logn). Using Fibonacci
heaps, we get the O(m + n logn) running time.

Theorem 2. In graphs with non-negative edge costs, DIJKSTRA algorithm can find the shortest paths
from s to every vertex v in O(m + n logn) time.

The Shortest Path Tree. Just like in BFS(G,s), DIJSKTRA(G,s) also returns a tree rooted at s defined by
the parents. More precisely, consider the graph on all vertices v with dist[v] < ∞ where we add the edges
(parent(v), v). This tree is called the shortest path tree.

6



S

a b

2 3

-2

Figure 1: DIJKSTRA fails on this graph with negative costs

DIJKSTRA doesn’t work with negative cost edges. Proofs to both lemmas, Lemma 7 and Lemma 8, cru-
cially use the fact that the costs are non-negative. Indeed, they are otherwise false and in fact the algorithm
fails even with one negative edge. Figure 1 shows an example.

First, note that the shortest cost path from s to a is actually (s, b, a) of total cost 1. Let’s see what
DIJKSTRA does. First s will assign a distance label dist[a] = 2 and dist[b] = 3. Then, it will pick a into R
since dist[a] was the smaller one. And then, by design, it will never update dist[a] ever again. Remember,
the reason DIJKSTRA did it to make sure the algorithm proceeds fast. However, the negative edge (b, a) is
never allowed to update dist[a] again. And thus DIJKSTRA misses out and gives the wrong answer. Again,
if there were no negative edges, this won’t happen (as we just proved above).

It is very instructive to see that WBFS still works correctly on this example. s updates dist[a] to 2 and
dist[b] to 3, and puts both in Q. Then a is popped/removed, and it doesn’t update anything (there is no edge
coming out of a). But then we do get b again, and b would update dist[a] to 1 (and parent[a] to b). This
makes a come into the Q again, but then it doesn’t bring anyone new, and the algorithm terminates. And
note that Lemma 3 works even with negative costs. The issue with WBFS is that it may take a looong time
to terminate.

7


	Breadth First Search
	Dijkstra's Algorithm

