
CS31 (Algorithms), Spring 2020 : Lecture 13
Date:

Topic: Graph Algorithms 4: Detecting Negative Cost Cycles, and Shortest Paths when there aren’t any
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.

Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

1 Discussion

In the last lecture we saw that BFS finds shortest length paths from a given vertex s to every other vertex
v in the graph. This takes O(m + n) time. We also saw another algorithm, DIJKSTRA’s algorithm, which
finds the shortest cost/weight path from a given vertex s to every other vertex v, even when every edge has
a cost c(u, v) as long as the costs are non-negative.

But in some applications, some edges can indeed have negative costs. Or to put it differently, sometimes
certain edges can have “profits”. Can you think of a situation? (Hint: the “Ferryman” problem in PSet 0?)
And then DIJKSTRA’s algorithm doesn’t work. Can we think of an algorithm in this case?

Before we do so, let us recall what both the algorithms BFS and DIJKSTRA (and even the generalization
of BFS, the weighted WBFS) did. These algorithms kept updating the distance labels of every vertex, where
these labels were an upper bound on the shortest length/cost paths from s to that vertex. The reason for this
was that if we took the reverse of (v,parent[v],parent[parent[v]], . . . , s), this was a candidate path from
s to v of length/cost dist[v]. But, wait, why is that a path? Why is there nothing repeated? Why does the
sequence of “parents” end at s?

The reasons are worth revisiting. In BFS, the reason was that every edge (parent[u], u) was added
when parent[u] left the Q and u entered the Q. And in BFS, these vertices never returned in the Q, and
thus no “cycles” are created. In DIJKSTRA, the reason is similar: every edge (parent[u], u) is from a vertex
in R (the visited set) to outside R, and thus no “cycles” are created. But there is another reason. We know
that BFS and DIJKSTRA returns shortest length/cost paths: can a walk have a shorter length/cost than a
path? After all, doesn’t shortcutting give a shorter path? Does it? Even with negative cost edges? And this
is the big insight. If there is a cycle in a graph so that the sum of costs of edges on that cycle is negative,
then the shortest cost walk is −∞: we will keep going round and round this cycle forever. And indeed, these
are the instances when the algorithm WBFS never terminates. And if there is no negative cost cycle, then
the shortcutting always gives a shorter path, and thus the shortest walk will indeed be a path.

After that long prelude, we can finally say what we are going to see today. We are going to see an
algorithm which finds shortest path/walk when there are no negative cost cycles, and indeed will detect
when the graph has a negative cost cycle.

2 Directed Graphs without Negative Cost Cycles

We are going to take a circuitous route to the solution. (After all, we are talking about cycles. Ha!). Instead
of solving the shortest cost path problem in G, we solve a slightly different problem: that of length bounded
shortest cost walks.
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LENGTH BOUNDED SHORTEST WALK

Input: Directed graph G = (V,E) with costs c(e) on edges which could be negative; a source vertex
s; a parameter k.
Output: Minimum Cost walk w from s to v of length ≤ k, for all v ∈ V .

The reason of doing so stems from the discussion above: if G has no negative cost cycles, these shortest
cost walks are in fact shortest cost paths. The following lemma formalizes this.

Lemma 1. If G has no negative cost cycles, then the minimum cost walk from s to v of length ≤ n−1 is the
shortest path from s to v.

Proof. Clearly a path from s to v is a walk of length ≤ n − 1, so what we really need to prove is the reverse
direction. That is, given a walk of length w from s to v of length ≤ n − 1, there is a path of the same or less
cost. But note that we proved in graph-basics.pdf that any walk contains a subset of edges which is a path.
If we recall that proof, we see that the edges left out constitutes a bunch of circuits. Since no circuit is of
negative cost, we get that the cost of the path is at most the cost of the walk.

You may wonder “Why are walks easier to handle than paths?”. The answer will be clear when we
use a favorite technique to solve this problem : dynamic programming. Now that I whispered dynamic
programming in your ears, let us follow the principle of looking at an optimum solution, and then use it to
look for solutionettes, and then figuring out the smaller subinstances.

Consider the minimum cost walk w = (s, e0, v1, e1, . . . , v`−1, e`−1, v) from s to v of length ` ≤ k. Can
we break this solution into pieces? Well, what can we say about the walk w′ = (s, e0, . . . , v`−1)? We claim
that this is the minimum cost walk from s to v`−1 of length at most k − 1. Why? Suppose not, and there was
another walk w′′ of strictly smaller cost. Then adding the edge e`−1 to w′′ would give a length ≤ k walk
from s to v of strictly smaller cost than w. Furthermore, if we had the smallest cost length ≤ k − 1 length
walks from s to x for all vertices x which have an edge to v, we should be able to find the smallest cost
length ≤ k walk from s to v. Time to write the DP methodically now.

• Definition. We define dist[v, i] for all v ∈ V and 0 ≤ i ≤ k as the cost of the minimum cost walk from
s to v of length ≤ i. We are interested in dist[v, k] for all v ∈ V .

• Base Case. dist[s,0] = 0; dist[v,0] =∞ for all v ≠ s.

• Recurrence. The recurrence is this

∀v, i > 0, dist[v, i] =min(dist[v, i − 1], min
u∶(u,v)∈E

(c(u, v) + dist[u, i − 1])) (1)

• Proof. Let’s elaborate on the English explanation above. Let Cand(v, i) denote the set of walks from
s to v of length at most i. Thus,

dist[v, i] = min
w∈Cand(v,i)

c(w)

where c(w) = ∑e∈w c(e).

(≤) Clearly, Cand(v, i− 1) ⊆ Cand(v, i) and so d[v, i] ≤ d[v, i− 1]. Now fix any u with (u, v) ∈ E,
and let w′ be the walk in Cand(u, i − 1) of cost dist[u, i − 1]. Then w′ ○ (u, (u, v), v) is a walk
in Cand(v, i) of cost dist[u, i − 1] + c(u, v). This takes care of this case.
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Remark: Do you see how the proof above fails if we said paths instead of walks? It is
important that you do. w′ could already have v...

(≥) On the other hand, fix w ∈ Cand(v, i) of length ≤ i and cost dist[v, i]. If the walk is not of
length i, then w ∈ Cand(v, i − 1) and thus dist[v, i − 1] ≤ dist[v, i]. Otherwise, the walk is
of length i ≥ 1, and so let u be the second-to-last vertex in this walk. But then the subset w′

of the walk w ending at u is a walk in Cand(u, i − 1). Since c(w′) = c(w) − c(u, v), we get
dist[u, i − 1] ≤ dist[v, i] − c(u, v).

• Pseudocode.

1: procedure LWSB(G,s, k):
2: ▷ Returns dist[v, i] for every v and 0 ≤ i ≤ k.
3: ▷ Also returns parent[v, i] for every v and 0 ≤ i ≤ k.
4: dist[s,0]← 0; dist[v,0]←∞ for all v ≠ s. ▷ Base Case
5: parent[s,0]← �; parent[v,0]← � for all v ≠ s. ▷ Base Case
6: for i = 1 to k do:
7: for v ∈ V do:
8: dist[v, i]←min (dist[v, i − 1],minu∶(u,v)∈E(dist[u, i − 1] + c(u, v))).
9: ▷ Takes deg−(v) time

10: ▷ We abuse notation and say ∞+ c =∞ for any finite c.
11: If u is the vertex that minimizes, parent[v, i]← u.
12: ▷ At this point dist[v, k] has the minimum cost walk of length at most k
13: ▷ As before, the dist[v, k]’s can be used to recover the paths as well, but the parents

can also be used.

• Running Time and Space. The space required is O(nk). The running time is O(k(n +m)).

Lemma 1 states that if we are promised that G has no negative cost cycle, then LBSW(G,s,n − 1) will
indeed return dist[v, n − 1] for all vertices which are the shortest path lengths. However, this does raise the
following question: how would we know whether or not G has a negative cost cycle? Is there an algorithm
that can detect it?

It so happens that the previous algorithm is powerful enough to do this as well. Consider running
LBSW on G,s, k with k = n. Then note that if G has no negative cost cycle C reachable from s, then
dist[v, n− 1] = dist[v, n] for all v; the minimum cost walk of length at most n− 1 is the shortest path which
is also the minimum cost walk of length at most n. The following lemma shows that if G has a negative cost
cycle C reachable from s, then the above cannot be true for all v. And therefore, just checking this for all
v would help us detect a negative cost cycle.

Lemma 2. Suppose there is a negative cost cycle C in G and suppose C has a vertex reachable from
s. Consider running LBSW on G,s, k with k = n. Then, there exists a vertex v ∈ C such that
dist[v, n] < dist[v, n − 1].

Proof. Let C = (x1, . . . , xk, x1) be the negative cost cycle reachable for s. Since (xi, xi+1) is an edge for
all 1 ≤ i ≤ k (with the abuse k + 1 = 1), using (1) we get

dist[xi+1, n] ≤ dist[xi, n − 1] + c(xi, xi+1), ∀1 ≤ i ≤ k
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Adding these up, we get

∑
v∈C

dist[v, n] ≤ ∑
v∈C

dist[v, n − 1] + c(C) < ∑
v∈C

dist[v, n − 1]

since c(C) < 0. This means dist[v, n] < dist[v, n − 1] for some v ∈ C.

Therefore, given any graph G and a source s, if we run LBSW on G,s with k = n, then either some
dist[v, n] < dist[v, n − 1] for some v implying a negative cost cycle reachable from s, or dist[v, n − 1]
contains the cost of the shortest paths from s to v. This algorithm is also called the BELLMAN-FORD

algorithm.

1: procedure BELLMAN-FORD(G,s):
2: Run LBSW(G,s,n) to obtain dist[v, i] and parent[v, i] for all v and 0 ≤ i ≤ n.
3: if there exists v with dist[v, n] < dist[v, n − 1] then:
4: ▷ There is a negative cost cycle containing v.
5: ▷ The following code uses the parent pointers to recover it.
6: x = v;j = n
7: while x ≠ v or j = n do:
8: Add (parent[x, j], x) to C.
9: x = parent[x, j].

10: j = j − 1.
11: return C
12: else:
13: ▷ dist[v, n]’s are indeed shortest path lengths, and construct the shortest path tree
14: Add all vertices with dist[v, n] <∞ to T .
15: for v ∈ T do:
16: Add (parent[v, n], v) to T .
17: return T .

Theorem 1. If there is a negative cost cycle reachable from s, BELLMAN-FORD returns one, or it
returns a shortest path tree T to all vertices reachable from s.

2.1 A Space Saver and a Better Presentation

Our presentation of the BELLMAN-FORD algorithm above is arguably a bit circuitous than what you would
see in the textbooks. But it is actually the same algorithm. Let’s try to see now how to get to these “textbook”
presentations.

First thing we notice is that Line 8 of LBSW can be done “edge-by-edge” instead of “vertex-by-vertex”.
That is, we could replace the for-loop (Line 7 in LBSW) as follows:

For all edges(u, v) ∈ E ∶ dist[v, i] =min (dist[v, i − 1],dist[u, i − 1] + c(u, v)))

That is, instead of minimizing over all out-edges in Line 8 of LBSW, we can stagger the minimization.
The second observation is that since the BELLMAN-FORD algorithm is only interested in the values of

k = n − 1 and k = n, we really don’t need to take care of the parameter i in dist[v, i] for all the other i’s. Of
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course, the way the DP builds up, it needs the smaller i’s to get to the final n− 1 and n. But note that the DP
can also forget (we sort of saw this in FIBONACCI: instead of the array, one could just keep the “last two”
values). That is, we just store dist[v] for each vertex, where the ith for-loop is supposed to be thought of
as dist[v, i]. With these two observations, we get the following algorithm (which is almost identical to the
ones given in the textbooks).

1: procedure BELLMAN-FORD-TXTBK(G,s):
2: dist[s] = 0 for all j; dist[v] =∞ for all v ≠ s. ▷ Base Case
3: for i = 1 to n − 1 do:
4: for (v, u) ∈ E do:
5: dist[v] =min(dist[u] + c(u, v),dist[v]).
6: ▷ We abuse notation and say ∞+ c =∞ for any finite c.
7: If dist[v] modified, set parent[v]← u.
8: ▷ At this point, dist[v] is really dist[v, n]. We do a final check for negative cost cycles.
9: for (u, v) ∈ E do:

10: if dist[v] > dist[u] + c(u, v) then:
11: return NEGATIVE CYCLE

Remark: We have been talking about directed graphs so far. What about the same problem in undi-
rected graphs? More precisely, can we detect if an undirected graph has a negative cost cycle? Turns
out this is tricky. Why? The reason is that a cycle in an undirected graph has to be of length 3 or more.
That is, {(u, v), (v, u)} is not a cycle in an undirected graph. However, in a directed graph a pair of
antiparallel edges is indeed a cycle. So, how will you go about finding whether an undirected graph
has a negative cost cycle?

Remark: Ok, what about shortest paths whether there are negative cost edges and negative cost cycles?
Paths are not allowed to repeat vertices, so this problem is indeed well-defined. How will we solve
this one? Short answer: no one knows, and many people believe that no good algorithm exists! To
understand what this “belief” means, wait for the last lecture of the course.
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