
CS31 (Algorithms), Spring 2020 : Lecture 14
Date:

Topic: Graph Algorithms 5: Flows and Cuts
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.

Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

In a directed graph G, given two vertices we can do DFS (or BFS) to figure out whether there is a path
from s to t. What if we want more? What if we wanted multiple paths from s to t which didn’t “touch
each other”, that is, shared edges. Such an issue naturally arises when the graph G is a telecommunication
network, and one maintains a back-up path in case one of the edges in the first path fails. Or, perhaps we
use both the paths to send more throughput from s to t. What is the maximum number of such disjoint paths
from s to t? Can we answer these questions?

Remarkably, the answer is yes, and this is covered by the study of flows in graphs. This problem is the
cornerstone of two areas of mathematics — combinatorial optimization and linear programming. It is an
understatement to say that these latter have changed the world. Let us begin by defining the problem.

Remark: Before we begin, here is a notation we use throughout this lecture and the remainder.
Suppose we have a real number x(e) ∈ R associated with every edge e of the graph. And suppose
B ⊆ E is a subset of edges. Then we use the shorthand x(B) to denote the sum ∑e∈B x(e).

1 Flows in a graph

Given a directed graph G = (V,E), a flow is just an assignment of values to edges satisfying certain con-
straints. The picture to keep in mind when thinking of flows is actually of “pipes” instead of edges, and
the “assignment” is the rate at which some fluid (water?) is flowing through these pipes. The water could
be coming from somewhere (sources), it could be going somewhere (sinks), there could be accumulation
(excesses), and individual pipes mayn’t be able to handle more than some rate (capacities). All these jargon
is formalized below.

Definition 1 (Flow Network). A flow network (G,s, t, u) consists of a directed graph G = (V,E), two
specified vertices s, t, and a capacity function u ∶ E → Z≥0 on edges of the graph. The vertex s is called the
source vertex and the vertex t is called the sink vertex.

Definition 2 (Feasible Flow). A feasible/valid/standard flow in a flow network is an assignment f ∶ E → R≥0
satisfying the following two constraints:

• (Capacity Constraints) For every edge e ∈ E, 0 ≤ f(e) ≤ u(e).
• (Conservation Constraints) For every vertex v ≠ {s, t}, ∑(u,v)∈E f(u, v) = ∑(v,w)∈E f(v,w).

The first constraint limits the amount of flow any edge by the capacity. The second says that for any
non-source, non-sink vertex, the total flow coming into a vertex v is the total flow leaving a vertex v. If you
have taken a physics course, then the current in a circuit satisfies the conservation constraints except at the
two ends of the battery. Indeed, another jargon for current is “electrical flow”.

Figure 1 shows an example of a network. The capacities u(e) are shows in bold blue. The flow values
are shown in green.

1



s

b

a

h

x

y

t

30

10 20

20

10

5

510

15

5

15

5

25

10

5

10

10 5

5

5

15

15

20

0

Figure 1: Example of a feasible/valid flow in a flow network. The bold blue numbers are the capacities u(e),
and the green numbers are the flow f(e). Verify that conservation constraints hold.

Definition 3 (Excess). Given any assignment f ∶ E → R≥0, we define the following excessf vector for every
vertex v ∈ V .

excessf(v) = ∑
(u,v)∈E

f(u, v) − ∑
(v,w)∈E

f(v,w)

That is, the excessf(v) is the total “in-flow” into v, that is, the total flow coming into v minus the total
“out-flow” from v, that is, the total flow coming out of v. Taking the water metaphor again, excessf(v)
is the rate at which surplus water accumulates at the vertex v if the flow is governed by the assignment f .
Going back to the definition of a feasible flow, we see that a flow is a feasible flow if (a) capacity constraint
holds at every edge, and (b) the excess at any non-source-non-sink vertex is exactly 0. The total amount of
excess at the sink t is the equal to negative of the total excess at the source s. This is called the value of the
flow: the total “water” flowing in the system.

Definition 4 (Value of a flow). The value of a feasible flow is the total excess at the sink, which equals the
negative of the total excess at the source. This will be denotes as val(f).

Remark: Although we have been talking about directed graphs, the above also makes sense for
undirected graphs. However, remember that flows are directed constructs. That is, f(u, v) = 1 doesn’t
imply f(v, u) = 1. More precisely, the flow is defined on ordered pairs of E. In an undirected graph,
we could have both f(u, v) and f(v, u) non-zero, but their sum must add up to less than that edge’s
capacity. For simplicity, let’s assume we have a directed graph.

Now we are ready to state the maximum flow problem.

MAX s, t FLOW

Input: A flow network (G,s, t, u).
Output: A feasible flow f ∶ E → R≥0 of maximum value.

2



What does flows have to do with “disjoint paths” in a directed graph (the illustrative problem we started
with)? To see the connection, consider unit capacities on every edge of G. That is, u(e) = 1 for all e ∈ E.
Note that if there are k edge-disjoint paths from s to t in the graph, then we can send a flow of value k from
s to t: just assign f(e) = 1 to all edges participating in the paths. Do you see why this is a flow of value k?
Figure 2 shows an illustration.

s

b

a

h

x

y

t

1

1

1

1

1

1

1 1

1
1

1
1

Figure 2: Four edge-disjoint s, t paths shown in four different colors. They are (s, a, x, t), (s, h, t),
(s, y, h, a, t), and (s, b, y, t). A flow of value 4 also shown.

Contrapositively, given a feasible flow of value k, if all the f(e)’s were 0 or 1, then it is not too hard to
see that they lead to k edge-disjoint paths. We start from s taking any edge with f(e) = 1. This leads us to
a vertex v. If v is not t, then by conservation there must exist another out-edge with f(e) = 1. Repeating
this will take us to t. Then we delete this path and repeat. Why should flow values be 0 or 1. A priori, no
reason. However, later on we will prove that this indeed is the case. In sum, the maximum flow problem on
unit capacity graphs will solve the disjoint paths problem.

2 Cuts in a graph

Now for something completely different. Till now, we have been given a graph G and we want to find a
path, or disjoint paths, between two vertices s and t. Next, we look at a dual problem – we want to remove
edges from the graph such that after the removal, s and t cannot have a path between them. Imagine s to be
a source of “infection”, and t is a vital node which needs protection. The edges of the graph show how the
infection can spread. We want to remove edges so that the infection can’t reach the vital node t from s. Of
course, we would like to remove as few edges as possible. Can we figure out what is the smallest number of
edges we need to remove? For an illustration, look at Figure 2 and try figuring out how what is the minimum
number of edges that needs to be removed to disconnect s from t.

The minimum s, t-cut problem generalizes the above problem when each edge has a cost (or a capacity),
and the goal is to disconnect s from t deleting as small a cost of edges as possible. There is a reason, which

3



will become clear soon, why we call the costs capacities.

Definition 5. Given a flow network (G,s, t, u), a subset F ⊆ E of edges is an s, t-cut if there is no path
from s to t in G ∖ F . The capacity of the cut F ⊆ E is defined to be cap(F ) ∶= ∑e∈F u(e). An s, t-cut
F ⊆ E is minimal if any strict subset F ′ ⊆ F is not an s, t-cut.

Every minimal s, t-cut can equivalently be represented as the boundary edges of a subset of vertices.

Definition 6. Given a directed graph G = (V,E) and a a subset S ⊆ V vertices, the out-boundary of S,
denoted as ∂+S, is defined to be

∂+S = {(x, y) ∈ E ∶ x ∈ S, y ∉ S}

Remark: There is an analogous definition of

∂−S = {(x, y) ∈ E ∶ x ∉ S, y ∈ S}

which is the t, s cut edges.

The following claim shows the equivalence.

Claim 1. The out-boundary of any subset S ⊆ V such that s ∈ S, t ∉ S is an s, t-cut. Any minimal s, t-cut is
the out-boundary of some subset S ⊆ V with s ∈ S, t ∉ S.

Proof. Fix a subset S ⊆ V with s ∈ S, t ∉ S. Let F ∶= ∂+S. Consider the graph H ∶= G ∖ F . Suppose, for
contradiction, there is a path from s to t in H . Let this path be s = x0, x1, . . . , xk = t where each (xi, xi+1)
is an edge in H . Since x0 ∈ S and xk ∉ S, there must exist some i such that xi ∈ S and xi+1 ∉ S. This
implies (xi, xi+1) is an edge in ∂+S. But this implies (xi, xi+1) ∉H . Contradiction.

For the other direction, suppose F ⊆ E is a minimal s, t-cut. Consider the vertices S that are reachable
from s in G ∖ F . We claim that F = ∂+S. To see ∂+S ⊆ F , consider any edge (u, v) ∈ ∂+S. Since u is
reachable from s in G ∖ F , if the edge (u, v) ∉ F , that is, (u, v) ∈ G ∖ F , then v would be reachable from s
in G ∖ F as well. This contradicts that v ∉ S. To see F ⊆ ∂+S, we use the first part to say that (a) ∂+S is an
s, t-cut, and then since it is a subset of F and F is minimal, we must have F = ∂+S.

Remark: Henceforth, when we talk about s, t-cuts, we may just think of them as out-boundaries of
some subset S which contains s but doesn’t contain t.

MIN s, t CUT

Input: A flow network (G,s, t, u).
Output: An s, t-cut of minimum capacity. Equivalently, minS⊆V cap (∂+S).

One trivial example of an s, t-cut is given by all the out-edges incident on s, that is ∂+{s}, or all the
in-edges incident on t, that is, ∂−{t}. These are upper bounds on the value of the minimum cut. I hope you
can see examples where these may not be the minimum cuts. For instance, consider the picture in the left of
Figure 3. You may be tempted to say that the minimum s, t-cut has value 4 (all edges are unit capacity, say)
since s has four edges leaving, and t has four edges coming in. But the minimum cut is value is 1.

4



s

t

s

t

Figure 3: The removal of the green edge (marked in bold) disconnects s from t. This is because it is the
only edge going from inside the set S marked as an amoeba, to outside the set S.

3 Flows and Cuts: A Duality

One of the most fascinating results in algorithms is that the above max s, t flow problem and the min s, t
cut problem are actually one and the same. Or more correctly, they are two sides of the same coin. They are
duals of each other. We are going to build this over the next two lectures. In this lecture, we are going to
look at the “easy” direction. We show that given any network (G,s, t, u), the value of any feasible s, t flow
must be at most the capacity of any s, t cut. And in particular, the max-flow is at most the min-cut.

Lemma 1. Let f be any feasible s, t flow and ∂+S be any s, t cut. Then

val(f) ∶= excessf(t) ≤ u(∂+S) =∶ cap(S)

Proof. Since we know that excessf(t) = −excessf(s), the lemma is equivalently asking us to show that

u(∂+S) + excessf(s) ≥ 0

To get this, let’s add the excesses for every v ∈ S. Why? This is because we wish to argue about the relation
between excessf(s) and u(∂+S), and the edges participating in the latter may be “far away” from the vertex
s. Rather, they involve vertices on the “boundary” of the set S and somehow we need to “propagate” their
information to the vertex s which may be deep inside the set. We

∑
v∈S

excessf(v) = ∑
v∈S

⎛

⎝
∑

(u,v)∈E

f(u, v) − ∑
(v,w)∈E

f(v,w)
⎞

⎠
= ∑
(x,y)∈E

(f(x, y) ⋅ 1y∈S − f(x, y) ⋅ 1x∈S)

where 1x∈S is the indicator variable for x ∈ S and takes value 1 if x ∈ S and 0 if x ∉ S. Now note that since
f is feasible, the LHS is precisely excessf(s). On the other hand, the RHS is precisely f(∂−S) − f(∂+S),
that is, the total flow on the ∂−S edges minus the total flow on the ∂+S edges. Together, we get,

excessf(s) = f(∂−S) − f(∂+S)

5



s
t

1

1

1

1

1

2

1

1
1

1

S

a
b

q

d

c

p

Figure 4: The set S = {s, a, b, d}. The flow is shown in green numbers. If an edge has no number, the flow
is 0. The excessf(s) is precisely −2, the negative of the flow leaving s. f(∂+S) = 3, on the edges (d, p) and
(b, c). The incoming flow into S is f(∂−S) = 1 on the edge (c, d). The difference is the excess at s.

See Figure 4, and the caption below the picture, for an illustration of this.
To finish the proof of the lemma, we use the following observations.

Observation 1. (a) Since f(e) ≥ 0, we get f(∂−S) ≥ 0, (b) since f(e) ≤ u(e), we get f(∂+S) ≤ u(∂+S).

Taking this together, we get

excessf(s) ≥ −u(∂
+S) ⇒ u(∂+S) + excessf(s) ≥ 0

which completes the proof of the lemma.

The obvious corollary to the above fact is that the maximum feasible s, t flow in any graph is at most the
minimum s, t cut.

Theorem 1 (Weak Duality). In any graph network (G,s, t, u), the maximum s, t flow is at most the
minimum s, t cut value.

There is an important consequence of the (proof of) the above lemma which will be used to prove the magical
fact: that the maximum s, t flow equals the minimum s, t cut.

Theorem 2 (Corollary to Lemma 1). Suppose f is a feasible s, t flow f , and S is an s, t cut S such that

1. f(e) = u(e) for all e ∈ ∂+S
2. f(e) = 0 for all e ∈ ∂−S

Then f is a maximum s, t flow, S is a minimum s, t cut, and their values are the same.

Proof. The assumptions above imply that the inequalities in Observation 1 are indeed equalities. That would
imply excessf(s) + u(∂

+S) = 0 implying val(f) = val(S).

6


	Flows in a graph
	Cuts in a graph
	Flows and Cuts: A Duality
	The Residual Network

