
CS31 (Algorithms), Spring 2020 : Lecture 15
Date:

Topic: Graph Algorithms 5: Maximum Flow equals Minimum Cut; The Ford-Fulkerson Algorithm
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.

Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

In the last lecture we showed that the maximum s, t flow is at most the minimum s, t cut. Furthermore we
looked at the conditions which would prove max-flow equals min-cut. Let’s recall that theorem for we will
use this later.

Theorem 1. Suppose f is a feasible s, t flow f , and S is an s, t cut S such that

1. f(e) = u(e) for all e ∈ ∂+S
2. f(e) = 0 for all e ∈ ∂−S

Then f is a maximum s, t flow, S is a minimum s, t cut, and their values are the same.

In this lecture, we will prove the strong duality theorem: in any network, the maximum value of an
s, t flow equals the capacity of the minimum s, t cut. We do so via an algorithm. That is, we describe an
algorithm which in one swoop solves both the MAX-s, t-FLOW and the MIN-s, t-CUT problem, and also
proves their respective values are the same. This algorithm was designed by Lester Ford and Dilbert Ray
Fulkerson in the 1950s, and is called the Ford-Fulkerson algorithm. To describe this, we first introduce the
concept of the residual networks.

1 The Residual Network

Let us start with an algorithm for finding maximum flows that doesn’t work. Recall what we need to do:
we need to find a valid flow f ∶ E → R≥0 such that excessf(t) is maximized. We start with the zero flow:
f(e) = 0 for all e ∈ E, and try to increase this flow in iterations. Now consider an s, t-path p in the graph G.
Given such a path p, we can augment the current flow f along the path p as follows:

• Let δ =mine∈p u(e)
• For every e ∈ p, set f(e)← f(e) + δ.

Note that flow conservation remains valid; the total in-flow at any v ≠ s, t is equal to the total out-flow – it
is either δ or 0. Also note that by choice of δ and since we started from the 0-flow, the capacity constraint
also remains valid. Finally, the excessf(t) increases by δ. Progress!

How should we proceed? We could repeat the steps above, namely, find another s, t-path p and then
augment flow along path p. However, we have already sent some flow which could have used up some
capacity of certain edges e. In the augmentation step we should be wary of this lest we violate the capacity
constraint. The fix is to maintain a residual capacity uf(e) for every edge e. These are initially set to u(e),
the original capacity, but for every unit of flow that we pass through this edge, we must decrease its residual
capacity. This leads to the following augmentation procedure along path p given we have sent flow f :

• Let δ =mine∈p uf(e)
• For every e ∈ p, set f(e)← f(e) + δ.

1



• For every e ∈ p, set uf(e)← uf(e) − δ.

The above process can be repeated over and over again, and every time the value of the flow increases by
δ. We stop when δ = 0, that is, we can’t find any path p from s to t with mine∈p uf(e) > 0. How would we
check this? Simple: remove all edges with uf(e) = 0 and check if there is a path from s to t. We write the
full algorithm below.

1: procedure NAIVEMAXFLOW(G,s, t, u):
2: Start with f ≡ 0 and uf(e) = u(e) for all e.
3: ▷ Invariant: uf(e) + f(e) = u(e) for all e.
4: while true do:
5: Find any path p from s to t with mine∈p uf(e) =∶ δ > 0.
6: If no such path break
7: For every edge e ∈ p: f(e)← f(e) + δ; uf(e)← uf(e) − δ.

8: return f

As can be guessed by the name and the color of the shading, the algorithm above, although a solid try,
doesn’t return the correct solution. Let’s see an example where it fails (maybe you’d like to try to find one
first before peeking?): see Figure 1.

s

a b

t

x y

1

1

1

Figure 1: In this graph G, all edges have unit capacity. If we send our first augmentation along the path
p = (s, a, b, t), then we would send 1 unit of flow on this. All these edges would have uf(e) = 0 and
deleting these edges disconnects s and t. Thus the NAIVEMF algorithm would terminate. On the other
hand, there is a flow of value 2 which sets f(e) = 1 for all edges except (a, b). This would have been
achieved if we sent flow first on the path (s, x, b, t) and then (s, a, y, t). But how would we know to do that?

In a sense, the flow we chose to send, that is the one on the path (s, a, b, t) was a mistake. The main idea
behind the notion of the residual network is to keep safeguards which help us correct mistakes when made.
This is a general life principle, but something which beautifully works in the case of s, t flows.

Definition 1. Given a flow network (G,s, t, u) and a valid flow f ∶ E → R≥0, the residual network with
respect to flow f denoted as Gf is defined as follows:

• Gf = (V,Ef) where Ef = E ∪Erev

2



• Erev = {(v, u) ∶ f(u, v) > 0}, that is, Erev contains the reverse of all edges which carry positive flow.
• The residual capacity on edges in Ef is defined as follows

uf(x, y) =

⎧⎪⎪
⎨
⎪⎪⎩

u(x, y) − f(x, y) if (x, y) ∈ E
f(y, x) if (x, y) ∈ Erev

Let us draw the reverse graph for the network in Figure 1 with respect to the flow of unit 1 sent along
the path s, a, b, t. This is shown in Figure 2.

s

a b

t

x y

1

1

1

s

a b

t

x y

1 1 1 1

0

0
0

11

1

Figure 2: The graph in the left shows the flow in green. The graph in the right is the residual graph. The red
edges are Erev. The numbers are the residual capacities.

Why is the residual network important? Well, note that after the flow f is sent on the path (s, a, b, t), the
residual network Gf does have a path from s to t where every edge has a residual capacity uf(e) > 0; this
path is q = (s, p, b, a, q, t). As you can see, this path contains one edge (b, a) which is not in E but in Erev.

The question that should come into your mind now is: so what? The edge (b, a) doesn’t even exist
in the graph G; why are we bothering with such abstract constructs? Well, suppose you suppressed those
thoughts and tried to augment flow along this path q. (Wait! Firstly there is no edge (b, a) and now you are
asking me to send flow across it? ) But here’s the point: we know that since (b, a) ∈ Erev there must exist
(a, b) ∈ E with f(a, b) > 0. Indeed, f(a, b) = uf(b, a). So increasing flow along the dummy reverse edge
(b, a) ∈ Erev is actually just a short-hand for decreasing the flow along the edge (a, b). This augmentation
is indicating that our first choice of sending flow across the edge (a, b) was perhaps a “mistake”, and this
is fixing it. Indeed, this is the conceptual abstraction of the residual network: send flow along edges, but
keep the reverse edges as stop guards to rectify potential mistakes. Now we are ready to formally give the
algorithm.

2 The Ford Fulkerson Algorithm

First, we formally define what augmentation along a path in a residual network means.

3



1: procedure AUGMENT(Gf , s, t, p):
2: ▷ Augment along path p in the residual network Gf .
3: ▷ Modifies f(e) for every e ∈ G; modifies uf(e) for every edge e ∈ Ef .
4: δ ∶=mine∈p uf(e).
5: For every edge e = (x, y) ∈ p:

• If (x, y) ∈ E:
– f(x, y)← f(x, y) + δ;
– uf(x, y)← uf(x, y) − δ;
– uf(y, x)← uf(y, x) + δ;

• If (x, y) ∈ Erev:
– f(y, x)← f(y, x) − δ; ▷ Note: (y, x) ∈ E
– uf(y, x)← uf(y, x) + δ;
– uf(x, y)← uf(x, y) − δ;

The following invariants should be checked from the pseudocode above.

Claim 1 (Invariants of Augmentation).

I1. For every edge e ∈ E ∪Erev, uf(e) ≥ 0
I2. For every edge (x, y) ∈ E, f(x, y) + uf(x, y) = u(x, y)
I3. For every (x, y) ∈ Erev, f(y, x) = uf(x, y).

Claim 2. If f satisfied the capacity constraints before AUGMENT, then it does so after AUGMENT too.

Proof. This follows from the Invariants: For any edge (x, y) ∈ E, we have f(x, y) = u(x, y) − uf(x, y) ≤
u(x, y) (from I2 and I1, respectively). Similarly, I1 implies uf(y, x) ≥ 0, that is, f(x, y) ≥ 0.

Claim 3. If f is an s, t flow in G which satisfies flow conservation constraints at every vertex v ≠ s, t,
then the flow after AUGMENT step also satisfies flow conservation constraints at every vertex v ≠ s, t.
Furthermore, excessf(t) goes up by δ.

Proof. If v ∉ p, then there is nothing to discuss. So assume v ∈ p. Since v ∉ {s, t} it is an internal node in p
and let (w, v) and (v, x) be the two edges of p incident on it. There are four cases to consider.

• Case 1: (w, v) ∈ E, (v, x) ∈ E. In this case, both f(w, v) and f(v, x) go up by δ, implying the
increase in excess is 0.

• Case 2: (w, v) ∈ E, (v, x) ∈ Erev. In this case, f(w, v) goes up by δ and f(x, v) goes down by δ,
implying the increase in excess is 0.

• Case 3: (w, v) ∈ Erev, (v, x) ∈ E. In this case, f(v,w) goes down by δ and f(v, x) goes up by δ,
implying the increase in excess is 0.

• Case 4: (w, v) ∈ Erev, (v, x) ∈ Erev. In this case, both f(v,w) and f(x, v) go down by δ, implying
the increase in excess is 0.

Let (v, t) ∈ p be the edge incident on t. If (v, t) ∈ E, then f(v, t) increases by δ and the flow on no other
edge incident on t changes, implying excessf(t) goes by δ. If (v, t) ∈ Erev, then f(t, v) decreases by δ and
the flow on no other edge incident on t changes, implying excessf(t) goes by δ.

Now we are ready to describe the maximum flow algorithm.

4



1: procedure FORDFULKERSON(G,s, t, u):
2: Initialize f ≡ 0 and uf ≡ u and Gf ≡ G.
3: while true do:
4: Check if there is an s, t path p in Gf with all uf(e) = 0 edges removed.
5: If not, break.
6: Else, AUGMENT(Gf , s, t, p).

7: return (f,Gf).

Lemma 1. If u(e)s are integer valued, then FORDFULKERSON returns an integer valued valid f inO(nmU)
time, where U ∶=maxe∈E u(e).

Proof. Since the 0-flow is valid, and the Augmentation Claims imply AUGMENT maintains validity, we get
that the final flow is valid. We claim that the Line 4 in AUGMENT will set δ to a positive integer valued.
To see this, we need to prove uf is integer valued. But this is true in the beginning (when uf ≡ u), and
since subsequently f is augmented in δ-installments, the f is always integral which in turn leads to uf being
integral. Furthermore, each time excessf(t) grows by δ ≥ 1. Since the final flow is valid, the total value of
this flow excessf(t) ≤ nU since there can be at most n edges of the form (v, t) and each has capacity at most
U . Thus, the algorithm terminates in O(nU) rounds. Finally, note each round takes O(n +m) time.

The next lemma proves the flow returned is a max-flow by showing that the conditions of Theorem 1 holds.

Lemma 2. The flow f returned by FORDFULKERSON when it terminates is a maximum valued flow.

Proof. We describe a cut induced by a subset S which satisfied the properties of the corollary. In fact, define

S = {v ∶ v is reachable from s in Gf with all uf(e) = 0 edges removed.}

Clearly, s ∈ S. Since the algorithm terminates, t ∉ S.
Now fix an (x, y) ∈ ∂+(S). Since y is not reachable from s using positive residual capacity edges, we

get uf(x, y) = 0. By I2, this implies

For (x, y) ∈ ∂+(S), f(x, y) = u(x, y)

Now consider an (x, y) ∈ ∂−(S). Since x is not reachable from s using positive residual capacity edges, we
get uf(y, x) = 0 for (y, x) ∈ Erev. That is,

For (x, y) ∈ ∂−(S), f(x, y) = 0

But these are precisely the conditions of Theorem 1. Thus, f is a maximum s, t flow and S is a minimum s, t
cut. In one swoop, FORDFULKERSON (+ one DFS) finds not only the max-flow but also the min-cut.

Theorem 2. Given a flow network (G,s, t, u)where u(e) is a positive integer for every edge e ∈ E(G),
the FORDFULKERSON algorithm finds a maximum s, t flow which is integral, and a minimum s, t cut
in O(nmU) time, and max s, t flow equals min s, t cut.

5


	The Residual Network
	The Ford Fulkerson Algorithm

