
CS31 (Algorithms), Spring 2020 : Lecture 15 Supp 2
Date:

Topic: Graph Algorithms 5 Supp 2: Faster Flows
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.

Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

The FORDFULKERSON algorithm is a good algorithm when U is small.But when the time bound is
not satisfactory when U is large. In fact, the algorithm is not a polynomial time algorithm. Let’s visit this
again (we had this nag in the case of SUBSET SUM). What is the number of bits required to describe the
input to FORDFULKERSON. Note that for every edge, we need to write down its u(e), and since u(e)
is an integer between {1, . . . , U}, this requires O(logU). Thus, the number of bits required to describe
the input is O((n +m) logU). And, U is not upper bounded by any polynomial of logU . So, as stated,
FORDFULKERSON is not a polynomial time algorithm.

Now let me make another observation: FORDFULKERSON is not a completely described algorithm. This
is because in Line 4, we don’t quite specify how the path from s to t is chosen. We could use BFS, we could
use DFS, or perhaps some “oracle” is handing down the path. The example below in Figure 1 shows that if
we are not careful with how we choose paths, FORDFULKERSON can take Ω(U) time.

s

a

b

t

U U

U U

1

Figure 1: Suppose the first path we augment on is (s, a, b, t); we can augment only 1 unit of flow. Then in
the residual graph the edge (b, a) has uf = 1. Now suppose we augment on (s, b, a, t); we can augment only
1 unit of flow. Then to get the final flow of 2U units, we need to repeat this Θ(U) times.

Of course the paths we choose in the above algorithm are silly. There are two glaring ways to improve
upon the above algorithm. The first one: instead of choosing any path from s to t in Gf , choose the path
where the mine∈p uf(e) is maximized. That is, find the path p with the maximum capacity; recall, this
was a problem in the problem set which could be solved in DIJKSTRA time (which, if you recall, was
O(m + n logn) time). The second one is a little more subtler and not clear at first glance why it is a good
algorithm. It says, run BFS to find the shortest length path from s to t in Gf . As we see, in some regimes
this algorithm is even better than picking the maximum capacity one greedily.

1



1 Augmenting on Maximum Capacity Path

For completeness, we state this algorithm in pseudocode.

1: procedure MAXCAPFF(G,s, t, u):
2: Initialize f ≡ 0 and uf ≡ u and Gf ≡ G.
3: while true do:
4: Find the maximum capacity path p from s to t in Gf .
5: ▷ Recall, the capacity of path p is mine∈p uf(e).
6: ▷ This can be found a la DIJKSTRA in O(m + n logn) time.
7: Let δ∗ ∶= mine∈p uf(e).
8: if δ∗ = 0 then:
9: break

10: else:
11: AUGMENT(Gf , s, t, p).

12: return (f,Gf).

Theorem 1. If all the u(e)’s positive reals in the range [1, U], then MAXCAPFF finds the maximum
flow in O(m log(nU) ⋅ (m + n logn)) time.

Remark: The above algorithm is better than FORDFULKERSON whenever U/ log(nU) ≫m/n. More
importantly, it is a polynomial time algorithm.

Proof. The MAXCAPFF algorithm falls in the FORDFULKERSON suite and is therefore going to return a
maximum flow algorithm. What is interesting is the running time analysis. We show that the while loop
runs for O(m log(nU)) iterations. Since in each iteration we find the maximum capacity path and run
AUGMENT, each iteration takes O(m + n logn) time.

To argue about the number of iterations, let us introduce some notation. Let T denote the number of
iterations of the while loop which we index using small τ . We wish to show T ≤m log(nU). Let δτ denote
the value of δ∗ in the tth while loop. Let Fτ be the value of the flow just before the τ th while loop. So,
F1 = 0 and FT+1 = F ∗.

Lemma 1. For any 1 ≤ τ ≤ T , δτ ≥
F ∗−Fτ

m

We prove this lemma shortly. For now, let us assume this and complete the proof of the theorem. Note
that Fτ+1 = Fτ + δτ . Therefore, assuming the lemma we get

(Fτ+1 − Fτ) ≥
(F ∗ − Fτ)

m

Here’s a trick now which is commonly used with inequalities as above. Define Gτ ∶= F ∗ − Fτ , the G being
for gap. Note that the LHS above is precisely Gτ −Gτ+1. Therefore, we get

(Gτ −Gτ+1) ≥
Gτ
m

⇒ Gτ+1 ≤ Gτ ⋅ (1 −
1

m
)

2



Thus, the gap between the current flow and the maximum flow value drops multiplicatively. Applying the
above inequality inductively we get

GT ≤ G0 (1 −
1

m
)
T

≤ nU ⋅ e−T /m

Here we have used G0 = F
∗ ≤ nU and the ubiquitious math inequality (1 + z) ≤ ez for all z (we used it for

z = −1/m).
Since we run the T th while loop (that is, we haven’t reached max-flow yet), we get that GT = F ∗−FT ≥

1. Putting together everything, we get

1 ≤ nU ⋅ e−T /m ⇒ T ≤m log(nU)

This ends the proof of the theorem and all that remains is to prove Lemma 1. We do so next.

Proof of Lemma 1. In one of the drills you proved that the maximum flow in the residual graph before the
τ th iteration is precisely F ∗ − Fτ . Let Gfτ be this residual graph. Since δτ is the capacity of the maximum
capacity path, it means that if we delete all edges of capacity ≤ δτ , then there is no path from s to t. In
particular, there is an s, t cut in Gfτ which consists of edges of capacity ≤ δτ . The value of this cut can be at
mostmδτ (worst case the cut hasm different edges). The max-flow-min-cut theorem implies F ∗−Fτ ≤mδτ ,
which is precisely the lemma.

2 Augmenting on a shortest path: Edmonds-Karp Algorithm

This section was alluded to, but not proved in class.
The second idea for augmentation asks to just run BFS from s to t. That is, whenever we are searching

for a path from s to t inGf , take the shortest length path. More precisely, ignore all the edges with uf(e) = 0
in Gf , and then find the shortest length path from s to t in Gf . This gives an algorithm whose running time
doesn’t depend on U at all1. For completeness, we state this algorithm in pseudocode.

1: procedure EDMONDSKARP(G,s, t, u):
2: Initialize f ≡ 0 and uf ≡ u and Gf ≡ G.
3: while true do:
4: Find shortest length s, t path p in Gf after removing all uf(e) = 0 edges.
5: ▷ This can be found using BFS in O(m + n) time.
6: Let δ∗ ∶= mine∈p uf(e).
7: if δ∗ = 0 then:
8: break
9: else:

10: AUGMENT(Gf , s, t, p).

11: return (f,Gf).

1Of course it does; what we mean is that it doesn’t depend if U fits in the word and adding, multiplying, comparing, etc can be
done in Θ(1) time. A more precise statement would be that the number of iterations doesn’t depend on U at all.

3



Theorem 2. EDMONDSKARP finds the maximum flow in O(nm) iterations, and thus takes O(nm2)

time in all.

Proof. The proof technique of this theorem is quite different from that of Theorem 1; while that proof
argued that the total increase in flow in each step (the quantity δt was “large”), this proof argues about the
“structure” of the residual graph as time marches on. The main idea is this: we will show that by O(nm)

iterations of EDMONDSKARP, there cannot be any path from s to t in the residual graph. And therefore our
algorithm will have terminated with the maximum flow.

Once again we use small τ to index the while loops and use fτ to denote the flow just before while loop
τ is run. Let Gτ ∶= Gfτ be the residual graph with respect to fτ with all 0 residual capacity edges removed.

Let dτ(u, v) denote the shortest length path from u to v in Gτ . Note that if dτ(s, t) ≥ n then it must be
that s and t are disconnected in Gτ ; this is because paths can’t have length more than (n − 1). The proof
strategy is two pronged: in Lemma 2 we show that the distances can’t decrease over time, and in Lemma 3
we show that in every O(m) iterations the distance must strictly increase. This would prove that in O(nm)

iterations, we would have dτ(s, t) ≥ n implying termination.

In fact, Lemma 2 shows something stronger.

Lemma 2. For any vertex v and any τ , dτ(s, v) ≤ dτ+1(s, v) and dτ(v, t) ≤ dτ+1(v, t)

Proof. Let us consider how the graph changes from Gτ to Gτ+1. In Gτ we find a shortest length path from
s to t. Let this path be (s = x0, x1, . . . , xk = t). We send δ ∶= mine∈p uτ(e) flow through it; say the edge
e = (xi, xi+1) has residual capacity δ. In Gτ+1, we see that this edge has residual capacity 0 and is therefore
absent from Gτ+1. Furthermore, all the “flipped” edges of the form (xj+1, xj) are present in Gτ+1 (and they
could’ve been present in Gτ as well).

Now suppose dτ+1(s, v) < dτ(s, v) for some v. Let q be the shortest path from s to v in Gτ+1; observe
that q must contain an edge which was absent in Gτ , and therefore is a flipped edge of the form (xj+1, xj).
In fact, let’s choose v such that the number of these flipped edges in a shortest path in Gτ+1 is as small as
possible and let (xj+1, xj) be the last flipped edge in q.

Let’s divide this q into three pieces: q1 is the part from s to xj+1, then the edge (xj+1, xj), and let q2
be the path from xj to v. Since (xj+1, xj) is the last flipped edge in q, we get that q2 is a path present in
Gτ as well. Now, ∣q∣ = ∣q1∣ + 1 + ∣q2∣. Since q1 has fewer flipped edges than q, we get by the choice of v
that ∣q1∣ ≥ dτ(s, xj+1) = j + 1. This gives ∣q∣ ≥ j + 2 + ∣q2∣. On the other hand, there is a walk in Gτ from
s to xj using the shortest path, and then following q2 of length j + ∣q2∣ < ∣q∣. This is a contradiction to our
supposition.

The other proof about dτ(v, t)’s is similar and is left as an exercise.

Although the previous lemma shows that as τ increases the distances from s to t can’t decrease, this
distance can remain the same for a while. The next lemma shows that this can’t happen for long.

Lemma 3. The distance dτ(s, t) strictly increases in any contiguous m + 1 iterations.

Proof. Let’s chop up the while loops into epochs; epoch k for 1 ≤ k ≤ n − 1 contains all the τ ’s such that
distτ [t] = k. We need to show that the length of any epoch is ≤m.

To do so, we need to show that for two τ and τ + 1 in the same epoch k, some quantity (potential) must
be diminishing and thereby prove that epochs can’t last forever. This is a common technique in the analysis

4



of many algorithms, and choosing this potential often requires a deeper understanding of the algorithm’s
innards.

What could this quantity be? Once again, observe that when we go from Gτ to Gτ+1, one of the edges
(x, y) on a shortest path from s to t “flips”. In particular, the edge (x, y) is absent from Gτ+1 (since all
0 residual capacity edges are removed), and the edge (y, x) is present. Now comes the main observation
: the edge (y, x) cannot be in any shortest path from s to t for any τ ′ > τ in the same epoch. Why?
Well, note that dτ ′(s, t) = dτ(s, t) since we are in the same epoch. On the other hand, for any path path
containing edge (y, x), its length is at least dτ ′(s, y) + 1 + dτ ′(x, t) which by the previous lemma is at
least dτ(s, y) + 1 + dτ(x, t). But, this quantity is > k; to see this note k = dτ(s, x) + 1 + dτ(y, t) =

dτ(s, y) + dτ(x, t) − 1. Therefore, no such path can be a shortest path (since we are in the same epoch).

Remark: We should assert here that across epochs the edge (y, x) can appear in a shortest path. In
fact, you should think of examples where this does occur.

Why was the above reasoning useful? Well, since the edge (y, x) doesn’t appear in any shortest path,
the flipped edge (x, y) doesn’t come back across iterations in the same epoch. Therefore one edge keeps
“vanishing” in each epoch iteration and since there are at most m edges, we get that any epoch lasts at most
m iterations.

To formalize, define Eτ to be the set of edges which appear in some shortest path from s to t in Gτ . The
edge (x, y) was present in Eτ but is absent from Eτ+1. On the other hand, every edge in Eτ+1 is present in
Eτ ; this is because all shortest paths from s to t in Gτ+1 are also shortest paths in Gτ . Thus, as we go from
τ to τ + 1 the size of the set ∣Eτ ∣ drops by at least 1. Since this number can be at most m to begin with, any
epoch lasts for ≤m iterations. This completes the proof.

In sum, since d0(s, t) ≥ 0 from Lemma 2 and Lemma 3 we get that in ≤ nm iterations we would get s
and t disconnected leading to the termination of EDMONDSKARP. Since each iteration is a run of BFS, we
get the theorem.

5


	Augmenting on Maximum Capacity Path
	Augmenting on a shortest path: Edmonds-Karp Algorithm

