
CS31 (Algorithms), Spring 2020 : Lecture 19
Date:

Topic: P, NP, and all that Jazz!
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.

Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

The main goal of this lecture is to introduce the notions of NP and NP-hardness and NP-completeness,
and to understand what the P vs NP question is. Our treatment would be semi-formal; for a formal and
much more in-depth treatment I suggest taking CS 39. We start with decision problems.

1 Decision Problems

Definition 1. Informally, any problem Π is a decision problem if its solutions are either YES or NO. For-
mally, a problem Π is a decision problem if all instances I ∈ Π can be partitioned into two classes YES-
Instances and NO-instances, and given an instance I, the objective is to figure out which class it lies in.

Example 1. We have seen many examples of decision problems in this course.

1. (Subset Sum) Given a1, . . . , an;B decided whether or not there exists a subset of these numbers which
sum to exactly B?

2. (Reachability) Given a graph G = (V,E) and two vertices s, t, is there a path from s to t in G?
3. (Strongly Connected) Given a directed graph G = (V,E), is it strongly connected?

Not all problems are decision problems. There are optimization problems which ask us to maximize or
minimize things. For example, find the largest independent set in a graph; given an array, find the maximum
range sub-array; given a knapsack instance, find the largest profit subset that fits in the knapsack. Most
optimization problems, however, have decision versions. Let’s give some examples.

Example 2. 1. Given a graph and a number K, is there an independent set in G of size ≥K?
2. Given an array A[1 ∶ n] and a number K, are there i < j such that A[j] −A[i] ≥K?
3. Given a knapsack instance and a number K, is there a subset of items which fit in the knapsack and

give profit ≥K?

You get the picture.
Now that we have defined decision problems, let’s move to polynomial time reductions.

2 Polynomial Time Reductions

Definition 2. A decision problem ΠA polynomial time reduces to a decision problem ΠB if there exists an
algorithm A such that

• A takes input an instance I of ΠA.

• A outputs an instance J of ΠB .

• There exists a polynomial p(⋅) such that the running time of A on I ∈ ΠA is at most p(∣I ∣) where ∣I ∣

is the size of the instance. This necessarily implies ∣J ∣ ≤ p(∣I ∣).
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• I is a YES-instance of ΠA if and only if J is a YES-instance of ΠB .

In that case, we say ΠA ⪯poly ΠB , or simply, ΠA ⪯ ΠB .

Indeed, we have already seen, and you have written about, reductions. In each application of the max-
imum flow, we reduced the application to maximum flow. For example, to check if a bipartite graph has a
matching of size k, we saw an algorithm which takes an instance of bipartite matching (a bipartite graph
G) and constructs a network (NG) with the property that if the graph has a matching of size k, then the
max-flow in NG is k, and also vice-versa, namely, if NG has a max-flow of k, then G has a matching of size
k.

Why are reductions useful? Because they allow us to state in a formal sense when a problem ΠA is
“easier” than ΠB . Suppose we had a polynomial time algorithm B to solve problem ΠB , and if ΠA ⪯ ΠB ,
then we can also solve ΠA in polynomial time. To see this, note that given any instance I of ΠA, we can get
J = A(I) in polynomial time, and then use the algorithm B to decide whethet J is a YES instance or not.
Whatever it is, we can give the same answer for I. Let’s encapsulate this in a lemma.

Lemma 1. If ΠA ⪯ ΠB , and there exists a polynomial time algorithm to solve ΠB , then there is a polynomial
time algorithm to solve ΠA.

The other nice thing is transitivity.

Lemma 2. If ΠA ⪯ ΠB and ΠB ⪯ ΠC , then ΠA ⪯ ΠC .
b

Exercise: Prove this.

So where are we getting at? Suppose we are stuck at solving a problem ΠB . We try and try but never get
an efficient algorithm. What should we do? Suppose there was some other famous problem ΠA which many
more people have looked at, many more people have tried, and many more people have failed at getting
polynomial time algorithms. And suppose you can now prove ΠA ⪯ ΠB . Well, that will give very good
indication that ΠB is a hard nut to crack; by Lemma 1 solving ΠB will amount to solving ΠA in polynomial
time as well. Next, we describe this famous “hard” ΠA.

3 A “Hard” Problem

The problem is a cousin of a problem you already met in the problem sets. Recall what Boolean formulas
are. There are Boolean variables and their negations, together called literals. Examples are x1, x2, and so
on. Then there are clauses where each clause is a collection of literals orred with each other. Examples
being x1 ∨ x2, x2 ∨ x3 ∨ x4, and so on. A SAT formula is a collection of various clauses. A formula is
satisfiable if there exists a setting of {true, false} to the variables such that in every clause at least one of the
literals evaluates to true. For example, the formula could be

φ = (x1 ∨ x2) ∧ (x2 ∨ x1)

in which case it is satisfiable by setting both x1 and x2 to true. On the other hand, the formula

φ′ = (x1 ∨ x2) ∧ (x2 ∨ x1) ∧ (x1 ∨ x2) ∧ (x1 ∨ x2)

is unsatisfiable. You can check this by going over all the 4 possibilities of setting {true,false} to the x1, x2
variables.
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SAT
Input: A SAT formula with n variables and m clauses.
Output: Decide whether or not it is satisfiable.

SAT is a decision problem. We don’t know of any polynomial time algorithm for this problem.

Conjecture 1. There is no polynomial time algorithm for SAT.

Remark: At this point, you may be inclined to say, “Sure! This problem is so unstructured, what
can you do but check all assignments? And there are 2n many of them.” Well, don’t! First, there are
many heuristics which do better than pure guessing and do well in practice. Unfortunately, none of
them provably give fast algorithms all the time. Second, the argument above can be made for many
problems. And if something we have learned in this course is that the study of algorithms is riddled
with surprises (and we are surprised by many riddles).

The above is a conjecture. We are very far from either proving or disproving this conjecture. On the
one hand, the best algorithm for SAT runs in time “essentially” 2n (formally, it runs in 2n−o(n) time where
recall o(n) is the set of functions whose ratio with n tend to 0 as n tends to infinity). On the other hand,
O(n) algorithms for SAT are not ruled out. On a different track, as mentioned above, there are many fast
heuristics for SAT which solve the SAT formulas arising in practice very well. All in all, SAT is a very
interesting beast which hasn’t been tamed.

Here is another simpler sounding version of SAT.

3SAT
Input: A SAT formula with n variables, m clauses, and at most 3 literals per clause
Output: Decide whether or not it is satisfiable.

The next lemma shows that 3SAT is no simpler – in fact SAT can be reduced to 3SAT.

Lemma 3. SAT ⪯ 3SAT

Proof. Let’s recall what we need to do. We need to find an algorithm which takes an instance of SAT, that
is a formula, and returns an instance of 3SAT such that the SAT formula is satisfiable if and only if the
3SAT formula is.

Let φ be the SAT formula. Of course if all clauses had at most 3 literals, there was nothing to do. So
let us consider a clause C with more than 3 variables. Say, C = (x1 ∨ x2 ∨ x3 ∨ x4) with 4 literals. Our
reduction algorithm introduces a new variable yC and breaks C into 2 clauses as follows:

(x1 ∨ x2 ∨ yC) ∧ (yC ∨ x3 ∨ x4)

We claim that C is satisfiable if and only if the above two clauses are. If C is satisfiable, then one of its
literal is set to true. This literal appears in one of the two clauses above, say the first one. Then we set yC to
true making the second clause satisfied as well. On the other hand, if the above two clauses are satisfiable,
then exactly yC or yC is set to true. If the former, then one of the literals in the second clause which belongs
to C must be set to true. Which means C is also true.

Therefore, we can replace C by the above two clauses, which as you can see has 3 literals each. More
generally, if C has ` literals we could replace it with two clauses one of which has 3 literals and the other has
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` − 1 literals. We can then continue chipping on the (` − 1) length clause. Each time we would introduce a
new variable and a new clause. Therefore, a clause C of length ` can be transformed to an equivalent 3SAT
formula with ` − 3 extra variables and clauses such that the original clause is satisfiable if and only if the
3SAT formula is.

We can repeat the above for every clause. The resulting 3SAT formula will have at most O(nm)

variables and O(nm) clauses and has the property that it is satisfiable if and only if the original SAT
formula is. Also note that the above reduction time is at most a polynomial of (n+m), in fact, the total time
is O((n +m)

2
). This completes the proof.

Remark: You should observe that the number 3 can’t be brought down to 2 using the above trick. If
we try to break a clause of size 3 into two clauses with an extra variable, we end up with clauses of size
3. In fact this shouldn’t be a surprise; you have seen a linear time algorithm to solve 2SAT.

b
Exercise: Show a reduction from 3SAT to EXACT3SAT where every clause of the satisfiability formula
has exactly 3 literals.

Ok, so the general satisfiability formula can be reduced to another version with some extra structure.
Why is it useful for anyone who say works on graph algorithms or something else, and doesn’t care much
about satisfiability? The next lemma shows how reductions can straddle domains. A little later we will see
that SAT is the mother of “most” computation problems.

Consider the following problem. Call a subset I ⊆ V of vertices in a graph independent if for every pair
of vertices u and v in I , (u, v) is not and edge.

IS
Input: An undirected graph G = (V,E) and a parameter K.
Output: Decide whether or not there exists an independent set I in G with ∣I ∣ ≥K?

Lemma 4. 3SAT ⪯ IS

Proof. Again, let’s recall what we need to do. We need to come up with an algorithm which takes a 3SAT
formula and returns a graph G and a parameter K such that (a) if the formula is satisfiable then G has an
independent set of size ≥ K, and (b) if the formula is not satisfiable, then G can’t have an independent set
of size ≥ K. It is often easier to show the contrapositive of (b), that is, (b’) if G has an independent set of
size ≥K, then the formula is satisfiable.

For simplicity, and also because of the exercise above, we work with EXACT3SAT where each clause
has exactly 3 literals. The reduction is as follows. The graph has 2n + 3m vertices. These are divided into
two classes: Vvar and Vcl. For each variable xi of the formula φ, we add vertex xi and xi in Vvar. We add
an edge between them. For each clause C = (α ∨ β ∨ γ), we add three vertices (α,β, γ) to Vcl. We add all
three edges between them.

Now note that for the same literal, say x1 there is exactly one appearance in Vvar, but there can be many
appearances in Vcl. In fact it appears as many times this literal appears in the formula. Next comes the
crucial connector edges. For every literal α, we add an edge between the unique version in Vvar to every
appearance of the literal α in Vcl.

We give an example in Figure 1. Perhaps you should try out one for yourself too.
To complete the reduction we also need to specify the parameter K. We set K = n +m.

Now that the reduction is defined, we need to prove that it does what it is supposed to do.
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Say 𝜙 :
Variables:  x1 , x2, x3, x4

Clauses:     (x1 ∨ x2 ∨ ¬x3 )  ∧ (¬x2 ∨ x3 ∨ ¬ x4 ) ∧ (¬x1 ∨ x3 ∨ x4 )

x1 ¬x1 x2 ¬x2 ¬x3 x4 ¬x4

x1

x2

¬x3
¬x2

x3

¬x4
¬x1

x3

x3

x4

Figure 1: Example for the reduction 3SAT ⪯ IS

• Suppose φ is satisfiable. We now construct an independent set I of size n +m. For every α that is set
to true, we pick the vertex corresponding to the complement α from Vvar in I . At this point note I is
independent and is of size n. For every clause C = (β ∨ γ ∨ δ) we know at least one of the literals
must be set to true. We arbitrarily choose one of them, say β, and pick the corresponding vertex in Vcl
for this clause into I . Since β is set to true, we don’t pick the vertex corresponding to β in Vvar. And
thus I remains independent. Since across clauses vertices from Vcl don’t have edges, we see that I
remains independent after we pick one vertex from Vcl for each clause. Thus we get I of size (n+m).

• Now we need to prove that if there is an independent set I of size ≥ n + m, then the formula is
satisfiable. Firstly observe that G contains n disjoint edges and m disjoint triangles. Any independent
set can select at most one vertex from each such edge and each such triangle. Thus, if ∣I ∣ ≥ n +m,
then in fact ∣I ∣ = n +m and must pick one vertex from each edge and one vertex from each triangle.

Suppose we pick vertex α ∈ Vvar from the edge (α,α). Then set α to false. This defines an assignment
to all variables. We claim this satisfies the formula. Pick a clause (α ∨ β ∨ γ). We know that among
the corresponding vertices in Vcl we pick exactly one, say γ. But this means that among the two
vertices (γ, γ) in Vvar we must have γ in the independent set. That is, we must have set γ to true thus
satisfying the clause. Done.

You should “run” this proof on the example in Figure 1 to make sure you see what’s going on.

Let’s see what conclusions we can make at this point. Lemma 2 applied to Lemma 3 and Lemma 4
implies that SAT ⪯ IS. Thus if you believe that the completely unstructured problem SAT is “hard”, that is
if you believe Conjecture 1, then you get the conclusion “there are no polynomial time algorithms for IS”
using Lemma 1.
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4 P vs NP

We finally come to the main goal of this lecture: after this whenever you use the jargon “NP-hard” or
“NP-complete”, you will know what you mean by it, and never say things like

“You know, the problem’s like NP-hard so yeah not polynomial time.”

Before I begin, I confess we have done a bit of disservice to the concepts I am going to tell about by
choosing horrible names like P and NP. But it is what it is and we are stuck with it for better or worse.
Once again, let me remind you, what I am saying below is informal. It is not incorrect, but please take CS39
to get a better appreciation of all this.

Recall decision problems. P and NP are just classes (subsets) of decision problems. The definition of
P is straightforward.

Definition 3. P is the class of decision problems which can be solved in polynomial time.
More precisely, Π ∈ P if there exists an algorithm A and a polynomial p(), such that

• For every YES-instance I ∈ Π, A(I) runs in time p(∣I ∣) and returns YES.
• For every NO-instance I ∈ Π, A(I) runs in time p(∣I ∣) and returns NO.

The definition of NP is more interesting. NP is the class of decision problems which can be verified in
polynomial time. What? Let us elaborate in the definition below.

Definition 4. A problem Π lies in NP if there exists an algorithm A and a polynomial p(⋅), such that

• For every YES-instance I ∈ Π, there exists a “solution” S with ∣S ∣ ≤ p(∣I ∣) such that A(I,S) runs in
≤ p(∣I ∣ + ∣S ∣) time and returns YES.

• For every NO-instance I ∈ Π, and for every purported “solution” S of size ∣S ∣ ≤ p(∣I ∣), A(I,S) runs
in ≤ p(∣I ∣ + ∣S ∣) time and returns NO.

The above definition is deep, so let’s first look at an example and then we see other ways of interpreting
it.

Claim 1. SAT lies in the class NP.

Proof. We need to come up with an algorithm A which reads an instance of SAT, that is a formula φ, and a
“solution” S and says YES or NO. Here is one observation: we can assume that the solution S be any given
“format”; our algorithm A will say NO immediately if the format is not satisfied.

So here is what our “verifier” A expects: I should be a formula φ, and the solution S should be an
assignment of truth values to the variables of φ. Anything else, A will reject outright (that is, says NO).
Furthermore, if the format is correct, the algorithm just verifies if the truth value expressed in S satisfies the
formula φ. If so, it says YES.

Now we see that the conditions of the definition are trivially true. If φ is indeed satisfiable, then S be the
assignment which satisfies φ. We can’t stress enough: the algorithm A doesn’t need to find S; it just needs
to verify it. A much easier proposition. In any case, if φ is satisfiable then the S described would make the
algorithm A accept. All this takes linear time (so the polynomial is just a linear function).

On the other hand if the formula is not satisfiable, then if no assignment makes all clauses true. So if S is
not rejected outright, it will be rejected once all the clauses are verified by A. That is, if I is a NO-instance,
no matter what S you feed A the algorithm will say NO.
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Is your mind spinning yet?
Here is another interpretation of NP. Imagine Luna wants to solve SAT but she has tried hard and

failed. So she seeks help from an all powerful prover named Albus. More precisely, she seeks advice from
Albus regarding an instance I of SAT to decide whether it is satisfiable or not. If I is indeed satisfiable,
then Albus can find the solution (he is all powerful, remember) and write it down for Luna. Luna, however,
is a bit paranoid and she is worried that Tom may be impersonating as Albus and trying to fool her. So she
asks Albus to write down in a precise format and if there is any discrepancy, she just rejects.

So NP is the set of decision problems for which Luna can ask advice from Albus in a precise format
such that for YES-instances, Albus can write down a solution which Luna can verify and convince herself
that the instance is YES, while for NO-instances no solution from Albus, or from Tom impersonating as
Albus, can ever fool Luna into believing that the instance is a YES-instance.

Remark: “What’s that N in NP?” NP does not stand for “not polynomial”. Rather, it stands for
“non-deterministic polynomial”. If our algorithm (or Luna) is allowed to make divine guesses (advice
from Albus), then for YES-instances there is a guess which leads to the correct resolution, while for
NO-instance all guesses lead to rejection. The concept of non-determinism is a deep one and there are
some computation models where non-determinism, in fact, doesn’t give any power. Whether it does for
polynomial time algorithms, is, quite literally, a million dollar question.

b

Exercise: Prove P ⊆NP.

Question 1.
P

?
=NP

The famous P vs NP question asks whether NP ⊆ P or not? Is there any problem in NP that is not
in P? Is there any problem for which solutions can be verified efficiently but can’t be found efficiently? We
don’t know.

4.1 NP-hardness and NP-completeness

Although we don’t know whether P =NP or not, we do know in a sense the hardest problems in NP. This
is one of the deepest facts in computer science and is due to Stephen Cook and independently, Leonid Levin.

Theorem 1 (Cook-Levin Theorem). Let Π be any problem in NP. Then, Π ⪯poly SAT.

We already saw SAT was in the class NP. The above theorem says any problem in NP is “easier” than
SAT. Thus, if we have a polynomial time algorithm for SAT, then there is a polynomial time algorithm for
all problems in NP. Amazing, isn’t it? To prove P = NP, that is to argue about two sets, we just need to
argue about one element in the set NP. On the other hand, if we can prove SAT has no polynomial time
algorithms, then we prove P ≠NP; we have found one element in NP∖P. Conjecture 1 asserts this latter
state of affairs.

But we know there are harder problems than SAT. Lemma 3 and Lemma 4 shows this. And thus by
transitivity Lemma 2 we get that for any problem Π ∈ NP, we have Π ⪯ 3SAT and Π ⪯ IS as well. This
motivates the following definitions.

Definition 5. A problem Π is NP-hard if Π′
⪯ Π for any Π′

∈NP.
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That is, Π is NP-hard if its harder than all problems in NP. Theorem 1 implies that (a) SAT is NP-
hard, and (b) to show Π is NP-hard, all we need to show is SAT ⪯ Π. Thus, 3SAT and IS are NP-hard
problems.

Definition 6. A problem Π is NP-complete if it is (a) in NP and (b) is NP-hard.

NP-compelete problems form an equivalence class. By definition, for any two NP-complete problems
Π,Π′, we have Π ⪯ Π′ and Π′

⪯ Π. Since the exercise above shows IS is in NP and we know it is NP-hard,
we get IS is indeed NP-complete.

We end this lecture by saying that all problems don’t lie in NP. It may seem that verifying a solution
should be simple. But that intuition is perhaps misplaced. Here is an example and you should convince that
verifying the solutions don’t seem simple.

#IS
Input: Same as IS – a graph G and a number K (note K could be as large as 2n if n is the number of
vertices in G).
Output: Decide whether or not the number of independent sets in G is ≤K.
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