CS31 (Algorithms), Spring 2020 : Lecture 1 Supp

Topic: Algorithms with numbers, Intro to Algorithms Analysis Disclaimer: These notes have not gone through scrutiny and in all probability contain errors. Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

1 Correctness of the Addition Algorithm

We start with the subroutine for adding one-bit numbers. We denote this the BIT-ADD routine which takes input three bits b_1, b_2, b_3 and returns two bits (c, s). Note that the binary number with 'first' digit c and 'second' digit s is precisely 2c + s. For instance, the number 10 is $2 \cdot 1 + 0 = 2$ and the number 11 is $2 \cdot 1 + 1 = 3$. The property of BIT-ADD is that it returns (c, s) with the property $b_1 + b_2 + b_3 = 2c + s$. This subroutine is "hard-coded" using the following truth table.

b_1	b_2	b_3	(c,s)
0	0	0	(0,0)
0	0	1	(0,1)
0	1	0	(0,1)
1	0	0	(0,1)
0	1	1	(1,0)
1	0	1	(1,0)
1	1	0	(1,0)
1	1	1	(1,1)

You should check the above table satisfies $b_1 + b_2 + b_3 = 2c + s$.

Armed with this, we can define our grade-school addition. This is slightly (more wastefully) defined below than in the lecture notes in that we are defining a "carry array". This is purely for the convenience of the proof that is about to follow.

1: procedure ADD $(a[0:n-1], b[0:n-1])$:		
2:	\triangleright The two numbers are a and b	
3:	Initialize carry $[0:n] \leftarrow 0$ to all zeros.	
4:	Initialize $c[0:n]$ to all zeros $\triangleright c[0:n]$ will finally contain the sum	
5:	for $i = 0$ to $n - 1$ do :	
6:	$(carry[i+1], c[i]) \leftarrow BIT\text{-}ADD(a[i], b[i], carry[i])$	
7:	\triangleright Invariant: $a[i] + b[i] + carry[i] = 2carry[i+1] + c[i]$	
8:	$c[n] \leftarrow carry[n]$	
9:	return c	

Remark: The above algorithm returns an (n+1)-bit number whose (n+1)th bit is 0 if the final carry is 0, otherwise it is 1. Before going into the proof of correctness, do you see why two n bit numbers cannot give a number with > n + 1 bits?

Theorem 1. The algorithm ADD is correct.

Proof. To prove ADD is correct, we need to show no matter what a, b is, the number represented by the bit-array c[0:n] is precisely a + b. There is really no two ways to prove this – we look at the algorithm and see what the c[i]'s are and try to show that

$$\sum_{i=0}^{n} c[i] \cdot 2^{i} = \sum_{i=0}^{n-1} a[i] \cdot 2^{i} + \sum_{i=0}^{n-1} b[i] \cdot 2^{i}$$

To do so, we use the property of BIT-ADD stated in Line 7 of ADD:

For all
$$0 \le i \le n - 1$$
, $c[i] = a[i] + b[i] + (carry[i] - 2carry[i + 1])$ (1)

Multiplying both sides by 2^i and adding, we get

$$\sum_{i=0}^{n-1} c[i] \cdot 2^{i} = \left(\sum_{i=0}^{n-1} a[i] \cdot 2^{i}\right) + \left(\sum_{i=0}^{n-1} b[i] \cdot 2^{i}\right) + \left(\sum_{i=0}^{n-1} \mathsf{carry}[i] \cdot 2^{i} - \sum_{i=0}^{n-1} \mathsf{carry}[i+1] \cdot 2^{i+1}\right)$$

We are done proving c = a + b. To see this, observe LHS is precisely $c - c[n] \cdot 2^n = c - carry[n] \cdot 2^n$. The first parenthesized item of the RHS is a. The second parenthesized item of the RHS is b. The third is interesting; if you open up the summation you see that many terms cancel out and evaluates to $carry[0] \cdot 2^0 - carry[n] \cdot 2^n$ (make sure you see this.). This canceling behavior is often seen in summations and is given a name in math: it is said that this summation *telescopes* to only two terms, much like a long elongated telescope folds into one compact tube.

Phew! Our grade school teacher was correct.

2 Subtraction

There are actually two ways to subtract binary numbers. One is just the grade-school algorithm using a "borrow" instead of a "carry". However, there is another pretty nifty way to subtract using the *method of complements*.

The algorithm is as follows. It assumes the subroutine COMPLEMENT which takes a bit-array and flips it. That is, wherever there is a 0 it makes it a 1 and vice-versa.

1: p	rocedure SUBTRACT $(a[0:n-1], b[0:n-1])$:
2:	\triangleright The two numbers are <i>a</i> and <i>b</i> ; assumption $a \ge b$
3:	$a' \leftarrow \text{COMPLEMENT}(a).$
4:	$c \leftarrow ADD(a', b).$
5:	return $c' \leftarrow \text{COMPLEMENT}(c)$.

Theorem 2. The algorithm SUBTRACT behaves correctly.

Proof. First, given any number *n*-bit number *x* given as a bit-array x[0:n-1], we observe that x' = COMPLEMENT(x) is simply the number $(2^{n+1}-1) - x$. Indeed,

$$x = \sum_{i=0}^{n} x[i]2^{i}$$
 and $x' = \sum_{i=0}^{n} (1 - x[i])2^{i} = \sum_{i=0}^{n} 2^{i} - x = (2^{n+1} - 1) - x$

where we use the formula for a sum of geometric series.

Next, we argue that if a and b are both n-bits and $a \ge b$, then c = a' + b is also at most n-bits long. Indeed, $c = (2^{n+1} - 1) - (a - b)$. If $a \ge b$, then $c \le 2^{n+1} - 1$ implying it is at most n-bits long.

Thus, COMPLEMENT(c), the number we return, is $(2^{n+1} - 1) - c = (a - b)$. Done.

3 Correctness of the Multiplication Algorithm

In this section, we prove the correctness of the MULT algorithm by induction. This is the method many of you may have seen in CS30.

1: procedure MULT(x, y): \triangleright The two numbers are input as bit-arrays; x has n bits, y has m bits. $n \ge m$. 2: if y = 0 then: \triangleright Base Case 3: 4: **return** $0 \triangleright$ An all zero bit-array $x' \leftarrow (2x); y' \leftarrow |y/2|$ 5: $z \leftarrow MULT(x', y')$ 6: if y is even then: 7: return z 8: 9: else: return ADD(z, x)10:

For a pair of natural numbers (x, y) with $x \ge y$, we say MULT(x, y) works properly if it returns $x \cdot y$.

Theorem 3. MULT(x, y) works properly on all pairs of numbers x, y.

Proof. Let P(n) be the predicate which is true if MULT(x, n) works properly on pairs (x, n) with $x \ge n$. Observe that if $\forall n \in \mathbb{N} : P(n)$ is true, then the theorem holds. Therefore, we proceed to prove $\forall n \in \mathbb{N} : P(n)$ is true by inducton.

Base Case: n = 1. We need to show that MULT(x, 1) behaves properly for all $x \ge 1$. That is, we need to show MULT(x, 1) returns $x \cdot 1 = x$. Indeed, the algorithm runs Line 4 in this case and returns x. So P(1) is true.

Inductive Case: Fix a natural number $k \ge 1$. Assume $P(1), P(2), \dots, P(k)$ is true. We need to show P(k+1) is true. That is, we need to show for any number $x \ge k+1$, MULT(x, k+1) returns $x \cdot (k+1)$. To that end, fix a number $x \ge k+1$.

Let us consider the behavior of the algorithm. In Line 5, we set $y' = \lfloor (k+1)/2 \rfloor$. Since $k \ge 1$, $(k+1) \ge 2$, we have $y' \ge 1$. Furthermore, $y' \le k$. This is because $k \ge 1$ implies $2k \ge k+1$ which in turn implies $k \ge (k+1)/2 \ge y'$. In sum, $1 \le y' \le k$.

Since P(y') is true by the Induction Hypothesis, MULT(x', y') returns $x' \cdot y'$. Thus, the z set in Line 6 is indeed $z = x' \cdot y' = 2x \cdot y'$.

Now we have a simple case analysis: if (k+1) is even, then y' = (k+1)/2, and thus $z = 2x \cdot (k+1)/2 = x \cdot (k+1)$. Note that in the case (k+1) is even, the algorithm runs Line 8 and returns z = x(k+1). Thus, in this case, P(k+1) is true.

If (k + 1) is odd, then $y' = \lfloor (k + 1)/2 \rfloor = k/2$. Thus, $z = 2x \cdot y' = xk$. Note that in the case (k + 1) is odd, the algorithm runs Line 10, and returns z + x = kx + x = x(k + 1). Thus, even in this case, P(k + 1) is true.

Thus, in all cases P(k + 1) is true. Therefore, by induction, $\forall n : P(n)$ is true.