
CS31 (Algorithms), Spring 2020 : Lecture 1 Supp
Topic: Algorithms with numbers, Intro to Algorithms Analysis

Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.
Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

1 Correctness of the Addition Algorithm

We start with the subroutine for adding one-bit numbers. We denote this the BIT-ADD routine which takes
input three bits b1, b2, b3 and returns two bits (c, s). Note that the binary number with ‘first’ digit c and
‘second’ digit s is precisely 2c + s. For instance, the number 10 is 2 ⋅ 1 + 0 = 2 and the number 11 is
2 ⋅ 1 + 1 = 3. The property of BIT-ADD is that it returns (c, s) with the property b1 + b2 + b3 = 2c + s. This
subroutine is “hard-coded” using the following truth table.

b1 b2 b3 (c, s)
0 0 0 (0,0)
0 0 1 (0,1)
0 1 0 (0,1)
1 0 0 (0,1)
0 1 1 (1,0)
1 0 1 (1,0)
1 1 0 (1,0)
1 1 1 (1,1)

You should check the above table satisfies b1 + b2 + b3 = 2c + s.
Armed with this, we can define our grade-school addition. This is slightly (more wastefully) defined

below than in the lecture notes in that we are defining a “carry array”. This is purely for the convenience of
the proof that is about to follow.

1: procedure ADD(a[0 ∶ n − 1], b[0 ∶ n − 1]):
2: ▷ The two numbers are a and b
3: Initialize carry[0 ∶ n]← 0 to all zeros.
4: Initialize c[0 ∶ n] to all zeros ▷ c[0 ∶ n] will finally contain the sum
5: for i = 0 to n − 1 do:
6: (carry[i + 1], c[i])← BIT-ADD(a[i], b[i], carry[i])
7: ▷ Invariant: a[i] + b[i] + carry[i] = 2carry[i + 1] + c[i]
8: c[n]← carry[n]
9: return c

Remark: The above algorithm returns an (n+1)-bit number whose (n+1)th bit is 0 if the final carry
is 0, otherwise it is 1. Before going into the proof of correctness, do you see why two n bit numbers
cannot give a number with > n + 1 bits?

Theorem 1. The algorithm ADD is correct.

1



Proof. To prove ADD is correct, we need to show no matter what a, b is, the number represented by the
bit-array c[0 ∶ n] is precisely a + b. There is really no two ways to prove this – we look at the algorithm and
see what the c[i]’s are and try to show that

n

∑
i=0

c[i] ⋅ 2i =
n−1

∑
i=0

a[i] ⋅ 2i +
n−1

∑
i=0

b[i] ⋅ 2i

To do so, we use the property of BIT-ADD stated in Line 7 of ADD:

For all 0 ≤ i ≤ n − 1, c[i] = a[i] + b[i] + (carry[i] − 2carry[i + 1]) (1)

Multiplying both sides by 2i and adding, we get

n−1

∑
i=0

c[i] ⋅ 2i = (
n−1

∑
i=0

a[i] ⋅ 2i) + (
n−1

∑
i=0

b[i] ⋅ 2i) + (
n−1

∑
i=0

carry[i] ⋅ 2i −
n−1

∑
i=0

carry[i + 1] ⋅ 2i+1)

We are done proving c = a+b. To see this, observe LHS is precisely c−c[n] ⋅2n = c−carry[n] ⋅2n. The first
parenthesized item of the RHS is a. The second parenthesized item of the RHS is b. The third is interesting;
if you open up the summation you see that many terms cancel out and evaluates to carry[0] ⋅20−carry[n] ⋅2n
(make sure you see this.). This canceling behavior is often seen in summations and is given a name in math:
it is said that this summation telescopes to only two terms, much like a long elongated telescope folds into
one compact tube.

Phew! Our grade school teacher was correct.

2 Subtraction

There are actually two ways to subtract binary numbers. One is just the grade-school algorithm using a
“borrow” instead of a “carry”. However, there is another pretty nifty way to subtract using the method of
complements.

The algorithm is as follows. It assumes the subroutine COMPLEMENT which takes a bit-array and flips
it. That is, wherever there is a 0 it makes it a 1 and vice-versa.

1: procedure SUBTRACT(a[0 ∶ n − 1], b[0 ∶ n − 1]):
2: ▷ The two numbers are a and b; assumption a ≥ b
3: a′ ←COMPLEMENT(a).
4: c←ADD(a′, b).
5: return c′ ← COMPLEMENT(c).

Theorem 2. The algorithm SUBTRACT behaves correctly.

Proof. First, given any number n-bit number x given as a bit-array x[0 ∶ n−1], we observe that x′ =COMPLEMENT(x)
is simply the number (2n+1 − 1) − x. Indeed,

x =
n

∑
i=0

x[i]2i and x′ =
n

∑
i=0

(1 − x[i])2i =
n

∑
i=0

2i − x = (2n+1 − 1) − x

2



where we use the formula for a sum of geometric series.
Next, we argue that if a and b are both n-bits and a ≥ b, then c = a′ + b is also at most n-bits long.

Indeed, c = (2n+1 − 1) − (a − b). If a ≥ b, then c ≤ 2n+1 − 1 implying it is at most n-bits long.
Thus, COMPLEMENT(c), the number we return, is (2n+1 − 1) − c = (a − b). Done.

3 Correctness of the Multiplication Algorithm

In this section, we prove the correctness of the MULT algorithm by induction. This is the method many of
you may have seen in CS30.

1: procedure MULT(x, y):
2: ▷ The two numbers are input as bit-arrays; x has n bits, y has m bits. n ≥m.
3: if y = 0 then: ▷ Base Case
4: return 0 ▷ An all zero bit-array

5: x′ ← (2x); y′ ← ⌊y/2⌋
6: z ←MULT(x′, y′)
7: if y is even then:
8: return z
9: else:

10: return ADD(z, x)

For a pair of natural numbers (x, y) with x ≥ y, we say MULT(x, y) works properly if it returns x ⋅ y.

Theorem 3. MULT(x, y) works properly on all pairs of numbers x, y.

Proof. Let P (n) be the predicate which is true if MULT(x,n) works properly on pairs (x,n) with x ≥ n.
Observe that if∀n ∈ N ∶ P (n) is true, then the theorem holds. Therefore, we proceed to prove∀n ∈ N ∶ P (n)
is true by inducton.

Base Case: n = 1. We need to show that MULT(x,1) behaves properly for all x ≥ 1. That is, we need to
show MULT(x,1) returns x ⋅ 1 = x. Indeed, the algorithm runs Line 4 in this case and returns x. So P (1) is
true.

Inductive Case: Fix a natural number k ≥ 1. Assume P (1), P (2),⋯, P (k) is true. We need to show
P (k + 1) is true. That is, we need to show for any number x ≥ k + 1, MULT(x, k + 1) returns x ⋅ (k + 1). To
that end, fix a number x ≥ k + 1.

Let us consider the behavior of the algorithm. In Line 5, we set y′ = ⌊(k + 1)/2⌋. Since k ≥ 1, (k+1) ≥ 2,
we have y′ ≥ 1. Furthermore, y′ ≤ k. This is because k ≥ 1 implies 2k ≥ k + 1 which in turn implies
k ≥ (k + 1)/2 ≥ y′. In sum, 1 ≤ y′ ≤ k.

Since P (y′) is true by the Induction Hypothesis, MULT(x′, y′) returns x′ ⋅ y′. Thus, the z set in Line 6
is indeed z = x′ ⋅ y′ = 2x ⋅ y′.

Now we have a simple case analysis: if (k+1) is even, then y′ = (k+1)/2, and thus z = 2x ⋅ (k+1)/2 =
x ⋅ (k + 1). Note that in the case (k + 1) is even, the algorithm runs Line 8 and returns z = x(k + 1). Thus,
in this case, P (k + 1) is true.

3



If (k + 1) is odd, then y′ = ⌊(k + 1)/2⌋ = k/2. Thus, z = 2x ⋅ y′ = xk. Note that in the case (k + 1) is
odd, the algorithm runs Line 10, and returns z + x = kx + x = x(k + 1). Thus, even in this case, P (k + 1) is
true.

Thus, in all cases P (k + 1) is true. Therefore, by induction, ∀n ∶ P (n) is true.

4


	Correctness of the Addition Algorithm
	Subtraction
	Correctness of the Multiplication Algorithm

