
CS31 (Algorithms), Spring 2020 : Lecture 4
Date:

Topic: Divide and Conquer, 2
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.

Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

1 Maximum Range Subarray

In this problem, we are given an array A[1 ∶ n] of numbers (think integers or reals), and the goal is to find
i < j such that A[j] −A[i] is maximized.

MAXIMUM RANGE SUBARRAY

Input: Array A[1 ∶ n] of integers.
Output: Indices 1 ≤ i ≤ j ≤ n such that A[j] −A[i] is maximized.
Size: n, the length of A.

For example, if the array is
A = [13, 4, − 4, 5, 7, 10, − 5, 3]

then the solution is the indices 3 and 6 for A[6]−A[3] = 10−(−4) = 14 is the largest. Note that the knee-jerk
algorithm of choosing j to be the location of the maximum element and i to be the location of the minimum
element doesn’t work. In the example above, the maximum element is in index 1 and the minimum is in
index 7.

Once again, there is a trivial O(n2) time algorithm. One goes over all pairs (i, j) and choose the one
that maximizes A[j]−A[i]. We will now get a better algorithm using divide-and-conquer. In order to do so,
suppose we solved the problem on A[1 ∶ n/2] and A[n/2 + 1 ∶ n]. More precisely, suppose (i1, j1) was the
solution for A[1 ∶ n/2] and (i2, j2) was the solution for A[n/2 + 1 ∶ n]. Clearly both of these are candidate
or feasible solutions for A[1 ∶ n].

Are there other candidate solutions? Yes, and these are of the form (i, j) with i ≤ n/2 and n/2 < j.
Indeed, in the example above, the solution for A[1 ∶ 4] is (3,4) while the solution for A[5 ∶ 8] is (5,6). But
the solution for the whole array is the “cross pair” (3,6).

Is it any easier to find the best “cross pair” (i, j)? In this case the answer is a resounding yes!: since
we are trying to maximize A[j] −A[i] where 1 ≤ i ≤ ⌊n/2⌋ and ⌈n/2⌉ ≤ j ≤ n, we should choose j which
maximizes A[j] in n/2 < j ≤ n and choose i such that A[i] is minimized in 1 ≤ i ≤ n/2. These, that is
finding the maximum and minimum, are O(n)-time operations; a win over O(n2). And thus, divide and
conquer will give a much faster algorithm than O(n2). Below is the algorithm.

1



1: procedure MRS0(A[1 ∶ n]):
2: ▷ Returns 1 ≤ i ≤ j ≤ n maximizing A[j] −A[i].
3: if n = 1 then:
4: (i, j) ← (1,1). ▷ Singleton Array
5: return (i, j).
6: m← ⌊n/2⌋
7: (i1, j1) ←MRS0(A[1 ∶m])
8: (i2, j2) ←MRS0(A[m + 1 ∶ n])
9: i3 ← arg min1≤t≤mA[t] ▷ Takes O(m) time

10: j3 ← arg maxm+1≤t≤nA[t] ▷ Takes O(n −m) time
11: return best among (i1, j1), (i2, j2), (i3, j3). ▷ Takes O(1) time
12: ▷ When implementing it in your favorite language you may have to “shift” the indices re-

turned. Above, I am assuming i2, j2 to be indices between m+1 and n for it is run on A[m+1 ∶ n].

As in merge-sort and counting inversions, we can write the recurrence inequality for the running time T (n)
of MRS0. Indeed, Line 3 to Line 6 all cost O(1) time. Line 7 and Line 8 cost at most T (⌊n/2⌋) and
T (⌈n/2⌉) respectively. Line 9 and Line 10 together cost O(m) +O(n −m) = O(n) time in all. And thus,
we get

T (n) ≤ T (⌊n/2⌋) + T (⌈n/2⌉) +O(n)
which, as is familiar to us, evaluates to T (n) = O(n logn). This seems good, but in fact we can actually do
better using a similar idea as discussed in counting inversions algorthm: Ask More!

If you “opened up” the recursion tree, you would observe that the O(n) time to compute the max’s and
the min’s in Line 9 and Line 10 seems repetitive; the same comparisons are made more than once. This
gives an idea of what to ask more for; we want our maximum range sub-array algorithm also returns the
maximum and minimum of that sub-array.

1: procedure MRS(A[1 ∶ n]):
2: ▷ Returns (s, t, i, j) where

• A[j] −A[i] is maximized, and
• s, t are the indices of the min and max of A, respectively.

3: if n = 1 then:
4: return (1,1,1,1) ▷ Singleton Array

5: m← ⌊n/2⌋
6: (s1, t1, i1, j1) ←MRS(A[1 ∶m])
7: (s2, t2, i2, j2) ←MRS(A[m + 1 ∶ n])
8: s← arg min(A[s1],A[s2]) and t← arg max(A[t1],A[t2]). ▷ Takes O(1) time
9: (i, j) ← best solution among {(i1, j1), (i2, j2), (s1, t2)}.▷ Takes O(1) time

10: return (s, t, i, j).
11: ▷ See comment after previous code. Same applies here.

The conquer step in Line 8 takes only O(1) time: the max of the whole array is the max of the maxima
in the two halves. Same for the minima. Therefore, the recurrence inequality becomes

T (n) ≤ T (⌈n/2⌉) + T (⌊n/2⌋) +O(1)

2



which, using the Master Theorem, gives us the following.

Theorem 1. The MRS algorithm returns the maximum-range sub-array in O(n) time.

2 Multiplying Polynomials Faster: Karatsuba’s Algorithm

In this section we will look at a really fascinating application of the divide-and-conquer paradigm. The
problem is that of multiplying two univariate polynomials.

Recall, given a variable x, a degree n polynomial p(x) is of the form

p(x) =
n

∑
i=0

pi ⋅ xi

where pi is the coefficient of the degree i monomial xi. A degree n polynomial has (n + 1) monomials
(including the constant monomial x0 = 1) and coefficients.

Given two degree n polynomials, p(x) and q(x), the product of the two polynomials p(x) ⋅ q(x) is
another polynomial r(x). Let us recall this with an example. Consider

p(x) = 1 + x + x2 and q(x) = 2 + 3x + x2

Then, the product polynomial is

r(x) = (1 + x + x2)(2 + 3x + x2) = 2 + 5x + 6x2 + 4x3 + x4

Indeed, in general, if p(x) and q(x) are degree n polynomials, then r(x) is a degree 2n polynomial, whose
coefficient rk for the monomial xk, 0 ≤ k ≤ 2n is given by the formula

rk =
⎧⎪⎪⎨⎪⎪⎩

∑0≤i≤k pi ⋅ qk−i if k ≤ n

∑(k−n)≤i≤n pi ⋅ qk−i if n < k ≤ 2n
(1)

For instance, r2 = p0q2 + p1q1 + p2q0. Please make sure you understand the above formula before moving
on. Thanks!

MULTIPLYING POLYNOMIALS

Input: Coefficients of two degree n polynomials: arrays P [0 ∶ n] and Q[0 ∶ n]
Output: Coefficients of the product polynomial: array R[0 ∶ 2n].
Size: n, the length of P and Q.

We also assume that every P [i],Q[j] are “small” numbers and so they can be added and multiplied in O(1)
time.

An O(n2) time algorithm follows from the formula (1). Indeed, for every k, where 0 ≤ k ≤ 2n, we need
compute only a summation. The kth summation adds at most (n + 1) summands, and each summand is
product of two numbers. The summands can be found using a for-loop taking O(n) time. In sum, every
R[k], individually, can be computed in O(n) time. Since there are 2n + 1 different k’s, one can figure the
whole R[0 ∶ 2n] out in O(n2) time.

How can we do better? Perhaps one thought that may come to you is the following: each individual
R[k] computation sums up many different products; perhaps these are shared by different k’s? And if
so, one probably doesn’t need to recompute. Unfortunately, that is not the case. For example R[2] =
P [0]Q[2] + P [1]Q[1] + P [2]Q[0]. But, R[3] = P [0]Q[3] + P [1]Q[2] + P [2]Q[1] + P [3]Q[0]. No
summands are shared. Bummer.

3



Remark: At this point, it is natural to probably say, “Maybe one cannot do any better.” And if so, you
are in venerable company. The story goes that in the early 1960s the famous Russian mathematician
Andrei Kolmogorov held a seminar with the objective to show that any algorithm must need Ω(n2)
time to multiply two degree n polynomials. After the first meeting, a young student named Anatoly
Karatsuba came up with the algorithm we are about to describe. Kolmogorov canceled the remainder
of the seminar.

And the algorithm is a simple, but magical, divide-and-conquer algorithm. Let’s begin.

Remark: It may be useful to keep a “running example” to illustrate the algorithm. So, suppose our
example (for n = 3) is

p(x) = 1 + 3x + x2 + 2x3 and q(x) = 2 + x + 2x2 + x3

The product polynomial is

r(x) = 2 + 7x + 7x2 + 12x3 + 7x4 + 5x5 + 2x6

The boldface is just to make you aware that it is a specific example.

We will start with an algorithm which doesn’t quite do the job, and then fix it. Let m = ⌈n/2⌉. Consider the
polynomial p(x) and write it as

p(x) = p1(x) + xmp2(x) where p1(x) =
m−1
∑
i=0

P [i]xi and p2(x) =
n−m
∑
i=0

P [m + i]xi (2)

Similarly write

q(x) = q1(x) + xmq2(x) where q1(x) =
m−1
∑
j=0

Q[j]xj and q2(x) =
n−m
∑
j=0

Q[m + j]xj (3)

Note that all four polynomials p1(x), p2(x), q1(x), q2(x) have degree ≤ ⌈n/2⌉. For our example, we have
m = ⌈3/2⌉ = 2, and thus

p1(x) = 1 + 3x, p2(x) = 1 + 2x, q1(x) = 2 + x, q2(x) = 2 + x

Now, we see that the product r(x) of p(x) and q(x) can be written thus:

r(x) = (p1(x) + xmp2(x)) ⋅ (q1(x) + xmq2(x))

= (p1(x) ⋅ q1(x)) + xm ⋅ (p1(x) ⋅ q2(x) + p2(x) ⋅ q1(x)) + x2m ⋅ (p2(x) ⋅ q2(x)) (4)

Therefore, (4) implies that r(x) can be computed by recursively multiplying the four pairs of polynomials
(p1(x), q1(x)), (p1(x), q2(x)), (p2(x), q1(x)), and (p2(x), q2(x)). Each pair is a product of polynomials
of degree at most ⌈n/2⌉. After computing these four products, we need to add these four product polynomials
up. This is the “conquer/combine” step.

4



How much time does it take to add up two degree k polynomials? Let us figure this out. Given two
degree d polynomials, let us now call them a(x) and b(x), the addition is another degree d polynomial
whose kth coefficient is simply the sum of the corresponding kth coefficients of a(x) and b(x). That is, one
can obtain the sum of two polynomials in O(n) time.

To summarize, the suggested recursive algorithm is to compute four products: (1) r1(x) = p1(x)q1(x),
r2(x) = p1(x)q2(x), r3(x) = p2(x)q1(x), and r4(x) = p2(x)q2(x) recursively. And then, outputting
r(x) = r1(x) + xm ⋅ (r2(x) + r3(x)) + x2mr4(x). Note that x2mr4(x) is simply another polynomial
whose coefficients are “shifted” by 2m. The following pseudocode gives the outline (but I am not providing
details).

1: procedure MULTPOLYDC(p(x), q(x)):▷ We want to return p(x) ⋅ r(x).
2: m← ⌈n/2⌉
3: Form the polynomials p1(x), p2(x), q1(x), q2(x) respectively. ▷ This takes O(n) time.
4: r1(x) ←MULTPOLYDC(p1, q1) ▷ This takes T (⌈n/2⌉) time.
5: r2(x) ←MULTPOLYDC(p1, q2) ▷ This takes T (⌈n/2⌉) time.
6: r3(x) ←MULTPOLYDC(p2, q1)▷ This takes T (⌈n/2⌉) time.
7: r4(x) ←MULTPOLYDC(p2, q2)▷ This takes T (⌈n/2⌉) time.
8: Form r(x) by combining r1(x), r2(x), r3(x), r4(x)r. ▷ This takes O(n) time since adding

polynomials takes O(n) time.

Just to illustrate, for our example polynomials, we get that

r1(x) = 2 + 7x + 3x2, r2(x) = 2 + 7x + 3x2, r3(x) = 2 + 5x + 2x2, r4(x) = 2 + 5x + 2x2,

And therefore, the algorithm would return the polynomial

(2 + 7x + 3x2) + x2 ((2 + 7x + 3x2) + (2 + 5x + 2x2)) + x4 (2 + 5x + 2x2)

which equals

2 + 7x + 3x2 + (4x2 + 12x3 + 5x4) + (2x4 + 5x5 + 2x6) = 2 + 7x + 7x2 + 12x3 + 7x4 + 5x5 + 2x6 (5)

which is what it should be (that is, r(x).).
What is the running time of the above algorithm? Well, it breaks a problem into four subproblems each

of size ⌈n/2⌉ and then combines them in time O(n). That is, the recurrence inequality governing the running
time is

T (n) ≤ 4T (⌈n/2⌉) +O(n)
We apply the Master Theorem, and then we get T (n) = O(n2). Sigh! Much ado about nothing?

Next comes the Aha! insightful observation. We observe that we really don’t need the individual products
p1(x) ⋅ q2(x) and p2(x) ⋅ q1(x) at all. What we need is just their sum. Can we compute the sum without
computing the individual summands. Turns out, in a way, yes. It follows from the following observation.

Observation 1.

p1(x)q2(x) + p2(x)q1(x) = (p1(x) + p2(x)) ⋅ (q1(x) + q2(x)) − (p1(x) ⋅ q1(x)) − (p2(x) ⋅ q2(x))

Proof. Just open up the brackets and see.

5



Again going back to our example, we see that

(p1(x) + p2(x)) ⋅ (q1(x) + q2(x)) = (2 + 5x) ⋅ (4 + 2x) = (8 + 24x + 10x2)

And thus,

r2(x) + r3(x) = (8 + 24x + 10x2) − (2 + 7x + 3x2) − (2 + 5x + 2x2) = 4 + 12x + 5x2

which is indeed the case. And as in (5), we proceed to get the right product of p(x) and q(x).
Why is this observation useful? Well, note that p1(x)q1(x) and p2(x)q2(x) have been computed already

(these are r1(x) and r4(x)).

Therefore, to compute the sum in the LHS, that is r2(x) + r3(x), we don’t have to compute them
individually, but rather compute the product (p1(x) + q1(x)) ⋅ (p2(x) + q2(x)) and subtract the r1(x) and
r4(x) from this. Thus, we can get away with three multiplications of smaller polynomials.

1: procedure KARATMULTPOLY(p(x), q(x)):▷ We want to return p(x) ⋅ r(x).
2: m← ⌈n/2⌉
3: Form the polynomials p1(x), p2(x), q1(x), q2(x) respectively. ▷ This takes O(n) time.
4: r1(x) ←MULTPOLYDC(p1, q1) ▷ This takes T (⌈n/2⌉) time.
5: r4(x) ←MULTPOLYDC(p2, q2) ▷ This takes T (⌈n/2⌉) time.
6: Compute polynomials p′(x) = p1(x) + p2(x) and q′(x) = q1(x) + q2(x).▷ This takes O(n)

time since adding polynomials takes O(n) time.
7: s(x) ←MULTPOLYDC(p′, q′)▷ This takes T (⌈n/2⌉) time.
8: t(x) ← s(x) − r1(x) − r4(x). ▷ This takes O(n) time since adding/subtracting polynomials takes

O(n) time.
9: Form r(x) by combining r1(x), r4(x), t(x). ▷ This takes O(n) time since adding polynomials

takes O(n) time.

One can now see that the recurrence inequality governing the above algorithm becomes

T (n) ≤ 3T (⌈n/2⌉) +Θ(n)

which gives us the following.

Theorem 2. The algorithm KARATMULTPOLY multiplies two n-degree univariate polynomials in
O(nlog2 3) = O(n1.59) time.

Below, we give another pseudocode which considers the input as arrays of the coefficients. This may
help you in actually coding it up. Indeed, you this will be asked in the coding assignment.

6



1: procedure KARATMULTPOLY(P [0 ∶ n],Q[0 ∶ n]):▷ We want to return R[0 ∶ 2n].
2: if n = 0,1 then:
3: return R[0 ∶ 2n] using the naive multiplication
4: m = ⌈n/2⌉.
5: ▷ Recall definitions of p1(x), p2(x), q1(x), q2(x) from (2),(3)
6: for 0 ≤ i ≤m − 1 do
7: P ′[i] = (P [i] + P [m + i])
8: Q′[i] = (Q[i] +Q[m + i])
9: if n > 2m − 1 then: ▷ In which case n = 2m since m = n/2 or m = (n + 1)/2.

10: P ′[m] = P [n]
11: Q′[m] = Q[n]
12: else:
13: P ′[m] = Q′[m] = 0

14: ▷ Now P ′ has the coefficients of p1(x) + p2(x). Q′ has the coefficients of q1(x) + q2(x).
15: ▷ Their degrees are m − 1 or m depending on the parity of n.
16: ▷ The else statement above forces degree m.
17:

18: R1[0 ∶ 2(m − 1)] = KARATMULTPOLY (P [0 ∶m − 1],Q[0 ∶m − 1])
19: R2[0 ∶ 2(n −m)] = KARATMULTPOLY (P [m ∶ n],Q[m ∶ n])
20: R3[0 ∶ 2m] = KARATMULTPOLY (P ′[0 ∶m],Q′[0 ∶m])
21: ▷ R1 has the coefficients of p1(x) ⋅ q1(x)
22: ▷ R2 has the coefficients of p2(x) ⋅ q2(x)
23: ▷ R3 has the coefficients of (p1(x) + p2(x)) ⋅ (q1(x) + q2(x))
24: ▷ Also note that R1,R2,R3 all have length ≤ 2m. We assume they all are 2m length by

padding 0’s.
25: for 0 ≤ i ≤ 2m do:
26: R4[i] = (R3[i] −R1[i] −R2[i])
27: ▷ R4 has the coefficients of p1(x) ⋅ q2(x) + p2(x) ⋅ q1(x) and is degree 2m
28: for 0 ≤ i ≤ 2n do:
29: R[i] = R1[i] +R4[i −m] +R2[i − 2m]
30: ▷We assume an array ‘returns 0’ if indexed out of its range. For instance, R4[−1] returns

0 and R1[2n] returns 0.
31: ▷ When you actually code it, you need a few “if” statements to implement the above.

Please do that – it’s super instructive.
32: return R[0 ∶ 2n]

7


	Maximum Range Subarray
	Multiplying Polynomials Faster: Karatsuba's Algorithm

