
CS31 (Algorithms), Spring 2020 : Lecture 4 Supplement
Date:

Topic: Divide and Conquer
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.

Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

This is an “advanced” application of divide and conquer. This is present in the Echo 360 video, but we
did not go over this in the classroom session. Read it at your own leisure

1 Closest Pair of Points on the Plane

We look at a simple geometric problem: given n points on a plane, find the pair which is closest to each
other. More precisely, the n points are described as their (x, y) coordinates; point pi will have coordinates
(xi, yi). The distance between two points pi and pj is defined as

d(pi, pj) =
√

(xi − xj)
2
+ (yi − yj)

2

One could also look at other distances such as d(pi, pj) = max (∣xi − xj ∣, ∣yi − yj ∣) and d(pi, pj) = ∣xi −
xj ∣ + ∣yi − yj ∣. What we describe below works for both these as well.

CLOSEST PAIR OF POINTS ON THE PLANE

Input: n points P = {p1, . . . , pn} where pi = (xi, yi).
Output: The pair pi, pj with smallest d(pi, pj).
Size: The number of points, n.

Once again, as many of the examples before, there is a trivial O(n2) time algorithm: simply try all pairs
and return the closest pair. This is the naive benchmark which we will try to beat using Divide-and-Conquer.

How should we divide this set of points into two halves? To do so, let us think whether there is a natural
ordering of these points? A moment’s thought leads us to two natural orderings: one sorted using their
x-coordinates, and one using their y-coordinates. Let us use Px[1 ∶ n] to denote the permutation of the n
points such that1 xcoor(Px[i]) < xcoor(Px[j]) for i < j. Similarly we define Py[1 ∶ n]. Getting these
permutations from the input takes O(n logn) time.

Before moving further, we point out something which we will use later. Let S ⊆ P be an arbitrary set of
points of size s. Suppose we want the arrays Sx[1 ∶ s] and Sy[1 ∶ s] which are permutations of S ordered
according to their xcoor’s and ycoor’s, respectively. If S is given as a “bit-array” with a 1 in position i if
point pi ∈ S, then to obtain Sx and Sy we don’t need to sort again, but can obtain these from Px and Py.
This is obtained by “masking” S with Px; we traverse Px from left-to-right and pick the point p = Px[i] if
and only if S[p] evaluates to 1. Note this is a O(n) time procedure. This “dynamic sorting” was something
we encountered in the Counting Inversions problem and is an useful thing to know. For more details, see
UGP2, Problem 2. Let us now get back to our problem.

Given Px, we can divide the set of points P into two halves as follows. Let m = ⌊n/2⌋ and x∗ ∶=

xcoor(Px[m]) be the median of Px. Define Qx ∶= Px[1 ∶ m] and Rx ∶= Px[m + 1 ∶ n], and let us use
Q and R to denote the set of these point. Figure 1 illustrates this.

1



Q R

𝛿 𝛿

𝛿𝑞 𝛿𝑟

S

Figure 1: Closest pair in a plane

We recursively call the algorithm on the sets Q and R. Let (qi, qj) and (ri, rj) be the pairs returned.
We will use2 δq ∶= d(qi, qj) and δr ∶= d(ri, rj). Clearly these are candidate points for closest pair of points
among P .

The other candidate pairs of P are precisely the cross pairs: (qi, rj) for qi ∈ Q and rj ∈ R. Therefore,
to conquer we need to find the nearest cross pair. Can we do this in time much better than O(n2)? If you
think for a little bit, this doesn’t seem any easier at all – can we still get a win? Indeed we will, but we need
to exploit the geometry of the problem. And this will form the bulk of the remainder of this lecture.

First let us note that we don’t need to consider all pairs in Q × R. Define δ ∶= min(δq, δr). Since we are
looking for the closest pair of points, we don’t need to look at cross-pairs which are more than δ apart.

Claim 1. Consider any point qi ∈ Q with xcoor(qi) < x
∗ − δ. We don’t need to consider any (qi, rj) point

for rj ∈ R as a candidate. Similarly, for any point rj ∈ R with xcoor(rj) > x
∗ + δ, we don’t need to consider

any (qi, rj) point for qi ∈ Q as a candidate.

Proof. Any candidate (qi, rj) we need to consider better have d(qi, rj) ≤ δ. But

d(qi, rj) ≥ ∣xcoor(qi) − xcoor(rj)∣

Therefore, if xcoor(qi) < x∗ − δ, and since xcoor(rj) ≥ x∗ for all rj ∈ R, we get ∣xcoor(qi)−xcoor(rj)∣ > δ.
Thus, we can rule out (qi, rj) for all rj ∈ R. The other statement follows analogously.

Motivated by the above, let us defineQ′ ∶= {qi ∈ Q ∶ xcoor(qi) ≥ x
∗−δ} andR′ ∶= {rj ∈ R ∶ xcoor(rj) ≤

x∗ + δ}. That is S ∶= Q′ ∪R′ lies in the band illustrated in Figure 1. To summarize, we only need to look
for cross-pairs3 in S × S.

1Just for simplicity we assume no two points share xcoor or ycoor coordinates. Not really necessary, but let’s assume anyway.
2We haven’t discussed the base case: if n = 2, then we return that pair; if n = 1, then we actually return � and the corresponding

δ = ∞.
3Actually, we can restrict to Q′ ×R′, but searching more widely doesn’t hurt and makes exposition easier.

2



Have we made progress? Note that all of Q could be sitting in Q′ and all of R could be sitting in R′,
and it may feel we haven’t moved much. But note, if that is the case, then all points are in a “narrow band”.
We will soon see why that is important.

Let us start with a “naive” way of going over all cross-pairs in S × S. Start with a point q ∈ S. Go over
all other points r ∈ S evaluating d(q, r) as we go and store the minimum. Then repeat this for all q ∈ S and
take the smallest of all these minimums. Again, to make sure we are on the same page, given that in the
worst case S = P , as stated this naive algorithm is still O(n2).

Once again, we want to use the observation that pairs which are > δ far needn’t be considered. In
particular, if the y-coordinates of two points are more than δ, we don’t need to consider that pair. So, for
any fixed q ∈ S, we could restrict our search only on the points r ∈ S with ∣ycoor(r) − ycoor(q)∣ ≤ δ. We
can do this restriction easily using the sorted array Sy.

To formalize this, first note that, as mentioned before, we can use Py (the sorted array of the original
points) to find the array Sy which is the points in S sorted according to the ycoor’s. To find the closest
cross-pair, we consider the points in the increasing ycoor order; for a point q ∈ S we look at the other points
r ∈ S subsequent to it in Sy having ycoor(r) ≤ ycoor(q) + δ, store the distances d(q, r), and return the
minimum. The following piece of pseudocode formalizes this.

1: procedure CLOSESTCROSSPAIRS(S, δ):
2: ▷ Returns cross pair (q, r) ∈ S × S with d(q, r) < δ and smallest among them.
3: ▷ If no d(q, r) < δ, then returns �.
4: Use Py to compute Sy i.e. S sorted according to ycoor. ▷ Can be done in O(n) time.
5: t← � ▷ t is a tuple which will contain the closest cross pair
6: dmin← δ ▷ dmin is the current min init to δ
7: for 1 ≤ i ≤ ∣S∣ do:
8: pcur ← Sy[i].
9: ▷ Next, check if there is a point qcur such that its distance to pcur is < dmin.

10: ▷ If so, then we define this pair to be t and define this distance to be the new dmin.
11: ▷ Crucially, we don’t need to check points which are δ away in the y-coordinate.
12: j ← 1; qcur ← Sy[i + j].
13: while ycoor(qcur) < ycoor(pcur) + δ do:
14: if d(pcur,qcur) < dmin then:▷ Modify dmin and t.
15: dmin← d(pcur,qcur);
16: t← (pcur,qcur)

17: j ← j + 1; qcur ← Sy[i + j]. ▷ Move to the next point in Sy .

18: return t ▷ Could be � as well.

Remark: One may wonder that we are not returning cross-pairs as we could return q, r both in Q′.
However, for any pair (q, r) returned, we have d(q, r) < δ; since δ = min(δq, δr), this pair can’t lie on
the same side.

Armed with the above “conquering” step, we can state the full algorithm.

3



1: procedure CLOSESTPAIR(P ):
2: ▷ We assume n = ∣P ∣.
3: ▷ We assume arrays Px[1 ∶ n] and Py[1 ∶ n] which are xcoor and ycoor-sorted P .
4: if n ∈ {1,2} then:
5: If n = 1 return �; else return P .
6: m← ⌊n/2⌋
7: Q be the points in Px[1 ∶m]

8: R be the points in Px[m + 1 ∶ n]
9: (q1, q2) ← CLOSESTPAIR(Q); δq ← d(q1, q2).

10: (r1, r2) ← CLOSESTPAIR(R); δr ← d(r1, r2).
11: δ ←min(δq, δr)
12: x∗ ← xcoor(Px[m]).
13: Compute S ← {pi ∶ x

∗ − δ ≤ xcoor(pi) ≤ x
∗ + δ}. ▷ Store as indicator bit-array

14: ▷ All cross-pairs worthy of consideration lie in S
15: (s1, s2) ← CLOSESTCROSSPAIR(S)
16: return Best of (q1, q2), (r1, r2) and (s1, s2).

How long does the above algorithm take? It really depends on how long CLOSESTCROSSPAIR(S) takes.
We now focus on the running time of this algorithm.

Note ∣S∣ could be as large as Θ(n). The inner while loop, a priori, can take O(∣S∣) time, and thus along
with the for-loop, the above seems to take O(n2) time. Doesn’t seem we have gained anything. Next comes
the real geometric help.

Remark: In the echo 360 lecture videos, we have a much stronger lemma than before with 72 replaced
by 8. Still, I think the arguments below has a certain generality which is good to know.

Lemma 1. Fix any point q ∈ S. Then there are at most 72 points r ∈ S with d(q, r) ≤
√

5δ.

Before we prove this, let us first see why is this lemma useful.

Corollary 1. The inner while loop always takes O(1) time.

Proof. Suppose not, that is, the while loop runs for > 72 iterations for some q = Sy[i]. Then, there are at
least 72 points r ∈ S s.t. ycoor(r) ≤ ycoor(q)+ δ, or ∣ycoor(r)− ycoor(q)∣ ≤ δ. Since q, r ∈ S, we know that
∣xcoor(r) − xcoor(q)∣ ≤ 2δ. This means that d(q, r) ≤

√
5δ. But this contradicts Lemma 1.

Proof of Lemma 1. Before going over the math, let’s see the intuition. Suppose there are > 72 points of S
in a circle of radius

√
5δ around a point q. Now at least 36 of these points belong to one set Q or R; let’s

without loss of generality this is R. What do we know about these 36 points – their pairwise distances are
≥ δ. How can we have so many points (if 36 doesn’t sound a lot, thing 36000) which are each δ-far from
each other, all sitting in a circle of radius

√
5δ? We can’t : try to picture it. You will see lot of congestion.

Now we do the math. Here is the formal argument. Let’s take these 36 points of R and draw circles
of radius δ/2 around them. Since any two pair of points is ≥ δ, all these circles are non-overlapping.

4



q

𝛿/2

Figure 2: Small Non-overlapping circles inside another circle. Can’t be many.

Furthermore, all these 36 circles lie in the bigger circle of radius (
√

5+ 1/2)δ around q. See Figure 2 for an
illustration.

We get a contradiction by an “area” argument. The area of the big circle is π ⋅ δ2 ⋅ (
√

5 + 1/2)2 < 9πδ2.
The area of each small circle is π ⋅ δ2/4. Since the 36 small circles all fit in the big circle and they are
non-overlapping, the sum of the areas of the small circles must be ≤ the area of the big circle. This is where
we reach a contradiction – the 36 small circles have area 9πδ2.

If T (n) is the worst case running time of CLOSESTPAIR when run on point set of n points, we get the
recurrence inequality which I hope we all have learned to love:

T (n) ≤ T (⌊n/2⌋) + T (⌈n/2⌉) +O(n)

This evaluates to T (n) = O(n logn).

Theorem 1. The closest pair of points among n points in a plane can be found by CLOSESTPAIR in
O(n logn) time.

5


	Closest Pair of Points on the Plane

