
CS 31: Algorithms (Spring 2019): Lecture 6
Date: 9th April, 2019

Topic: Dynamic Programming 1: Subset Sum
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors. Please notify

errors on Piazza/by email to deeparnab@dartmouth.edu.

In the next few lectures we study the method of dynamic programming (DP). The idea is really recursion as
in divide and conquer (D&C), but there are significant differences. In D&C, the smaller instances are often
obtained in a “straightforward way” (cutting an array in the middle, splitting a polynomial, etc), and they
are often disjoint and don’t interact with each other. The creativity in D&C lies in combining the solutions
to these smaller instances. In Dynamic Programming, the creativity actually lies in finding the smaller
instances itself; indeed, in some sense, the smaller instances are created by actually looking at how their
solutions will combine to give the solution to the original instance1, and thus the combining-the-solutions
step is easy. The smaller instances, however, heavily interact, and dynamic programming is efficient only
when one can still argue the total number of smaller instances that are recursively solved does not explode.
If one can set things up so, dynamic programming can often solve problems which, at first, may look rather
impossible to solve. Let’s give some more details before diving into concrete applications.

Let I be an instance of a problem we want to solve. We first abstractly imagine a solution S of I . Then,
we need two things to happen. First, from S we can obtain “pieces”, let’s call them solutionettes, S1, S2, . . .
such that (a) each solutionette Sj itself is the correct solution to a smaller instance Ij of the same problem,
and (b) given any solutionettes T1, T2, . . . to the smaller instances I1, I2, . . ., we can construct a solution
T to the original instance I . This describes the “division” into smaller subproblems I1, I2, . . . and how to
combine them. The second key things is to somehow show that the total number of smaller subinstances ever
encountered is “small”. This is often done by figuring out an arrangement of the possible smaller instances
Ij (either in a line, or in a grid) and arguing the arrangement size is small. This is the creative part of DP:
the definition of the smaller subinstances into a nice arrangement, and the recursive way in which solutions
can be combined. Of course, all this is very abstract, and perhaps hard to follow. I suggest keep looking at
examples and revisiting the above discussion often.

1 Subset Sum

SUBSET SUM

Input: Positive integers a1, . . . , an, Target positive integer B.
Output: Decide whether there is a subset S ⊆ {1, . . . , n} such that ∑i∈S ai = B? If YES, return the
subset.

What is a naive algorithm for the Subset Sum problem? One can go over all the subsets of {1,2, . . . , n}
– which takes O(2n) time. Not great. Subset Sum is one of the poster child problems for Dynamic Pro-
gramming. Let’s see how it works.

Let us revisit the abstract idea discussed at the beginning of this lecture. Given the instance I ∶=

(a1, . . . , an;B) of Subset Sum, assume there is a set S of these numbers which sum to B. Fix this set

1This may not make any sense now. It may in the third of fourth reading of these notes.

1



S in your mind. Can we “break” this set S into subsets which are solutions to “smaller instances of Subset
Sum”?

How do we even start breaking a solution into smaller solutions? One thing perhaps to start with (for
any problem) is just taking one element and removing it from the solution. Which element should we start
with? Often starting with the “last” (in some order) or “first” is a good idea. We will often go with the last.
In this case, we start by trying to remove an, the last element, from S.

• Suppose an was in S. Consider the set T = S ∖ an. Can we say whether T is a solution to some
other, hopefully smaller, Subset Sum instance? A moment’s thought tells YES: T is a solution to the
instance I1 = (a1, a2, . . . , an−1;B − an). If the elements in S sum to B, the elements of T sum to
B − an. Moreover, T is a subset of the first n − 1 elements.

• But what is an was not in S. We can’t even then “remove” an from S? How do we proceed? This is
perhaps the a ha! moment. In this case, then, S itself is a solution to a smaller subinstance of Subset
Sum. Which one? The instance I2 = (a1, a2, . . . , an−1;B). The instance with the “last” element
kicked out.

To summarize, we took our thought solution S of the instance I , and observed that in one case S ∖ an
is the solution for I1 = (a1, a2, . . . , an−1;B − an), and in the other case, S itself is the solution for I2 =

(a1, . . . , an−1;B). This gives us the way to obtain the two smaller instances I1 and I2 from the instance I .
Now let us try to see if we can achieve the two things we need to make dynamic programming work. We

saw that a solution S to I implies solutions to I1 and I2 (indeed, that is how they were constructed). How
about vice-versa? Indeed, it is simple. We see that

• if one gives us a subset T which is a solution to (a1, . . . , an−1;B), then the same T is a solution to
(a1, . . . , an;B) as well;

• if one gives us a subset T which is a solution to (a1, . . . , an−1;B − an), then T + an is a solution to
(a1, . . . , an;B) as well.

The argument for breaking the solution above was “reversible”. Therefore, we have obtained our recursive
substructure.

Next, we need to see whether these various subinstances ever seen when solving recursively are not too
many in number. Why would that be? Well let us stare at the two instances obtained. Indeed, it may help
to actually “draw out” the tree of instances obtained a little more for the pattern to emerge. See Figure 1 for
the first two layers; I recommend drawing one more to make sure you understand the instances.

We see that unlike in the case of Fibonacci numbers, there is no “repeating balls” (at least in the first
two-three layers). This could be disheartening. Don’t be. Rather ask “how does a general ball (instance)
look like?” in this tree. In this case the answer is it looks like I ′ = (a1, a2, . . . , am; b) for some integer
1 ≤ m ≤ n, and some integer b ≤ B. Therefore, the number of such smaller instances is not that large.
Indeed it is at most nB many (assuming B isn’t that large). The fact that the smaller instances could be
arranged as a n×B grid is the second key observation that convinces us dynamic programming would work
for subset sum.

Concretely writing down a DP solution

The above discussion was trying to give an intuition how when faced with a problem one can come up with
a dynamic programming solution. Writing it down, and finally getting the code from those thoughts can be
tricky. But it actually mechanical, and I would like to show the steps.

2



I = (𝑎1, 𝑎2, … , 𝑎𝑛, 𝐵)

I1 = (𝑎1, 𝑎2, … , 𝑎𝑛−1, 𝐵 − 𝑎𝑛) I2 = (𝑎1, 𝑎2, … , 𝑎𝑛−1, 𝐵)

I11 = (𝑎1, 𝑎2, … , 𝑎𝑛−2, 𝐵 − 𝑎𝑛 − 𝑎𝑛−1) I12 = (𝑎1, 𝑎2, … , 𝑎𝑛−2, 𝐵 − 𝑎𝑛) I21 = (𝑎1, 𝑎2, … , 𝑎𝑛−2, 𝐵 − 𝑎𝑛−1) I22 = (𝑎1, 𝑎2, … , 𝑎𝑛−2, 𝐵)

Figure 1: The smaller instances for subset sum

1. Definition. When you figure out that the subinstances can be arranged in a nice order, you actually
can concretely define a recursive function which will assist to write the final code. As we observed
that a general sub instance is defined by the m and the b, the following definition emerges for Subset
Sum.

For any integer 0 ≤ m ≤ n; 0 ≤ b ≤ B, define F (m,b) = 1 if there exists a subset S ⊆

{1,2, . . . ,m} such that ∑i∈S ai = b, and 0 otherwise. We are interested in figuring out
whether F (n,B) = 0 or 1.

We are also interested in finding the subset if F (n,B) = 1, but for the time being let us focus on the
“decision question.”

In general your definition should be parametrized by the “arrangement” you have discovered in your
sub-instances, and contain the “essence” of each subinstance.

2. The Base Cases. Any recursive function must have base cases. These are the “small values” for which
the value of the function is known. For Subset Sum, what are they? Here are some.

F (m,0) = 1 for all 0 ≤m ≤ n. F (0, t) = 0 for all t > 0. F (m, t) = 0 for any t < 0.

What do they mean in English? F (m,0) = 1 means there is a subset of the first m elements (even
when m = 0) which sums to 0. Which is it? The empty set ∅. F (0, t) = 0 for t > 0 because there is no
subset of the empty set which can sum to more than 0. Finally, if t < 0, then there is no subset which
can add to t since ai’s are positive.

3. The Recurrence Relation: After the definition, this is the most important part of the dynamic pro-
gramming solution. How does the recursive function get defined using smaller values? Again, this
one obtains by noting how the solutions to the smaller instances give rise to a solution to the original
instance. For Subset Sum, this is

For any m ≥ 1, b > 0; we have

F (m,b) = max (F (m − 1, b), F (m − 1, b − am)) (SubsetSumRec)

3



Once again, the English reason is that given solutions to (a1, . . . , am−1; b) and (a1, . . . , am−1; b−
am), one can get the solution of (a1, . . . , am; b). The latter has a solution if one of the two
have a solution. Thus, we need to take an OR (which is the same as MAX).

4. Proof: Sometimes, English reasoning can be misleading. Best to prove the recurrence. For Subset
Sum we have really already done so when we were trying to describe the idea behind the recurrence.
We will repeat it again for good measure. The proof of the recurrence is where you really can precisely
talk about the idea behind the algorithm.

Proof of (SubsetSumRec). There are always two directions. One corresponds to go from a solution
to the original instance to solutions to smaller instances. The other is vice-versa. The skeleton of this
proof will form the structure of most dynamic programming arguments we will see.

(≤): If F (m,b) = 0, then the inequality follows since the RHS is ≥ 0. So suppose F (m,b) = 1. That
is, the “bigger instance” has a solution. We need to show one of the smaller instances has a
solution.
That is, there is a subset S ⊆ {1,2, . . . ,m} which sums to b. If am ∈ S, then S ∖ am ⊆

{1,2, . . . ,m − 1} sums to b − am, implying F (m − 1, b − am) = 1. If am ∉ S, then S ⊆

{1,2, . . . ,m − 1} sums to b, implying F (m − 1, b) = 1. Since one of the two cases must hold;
F (m,b) ≤ max(F (m − 1, b), F (m − 1, b − am)).

(≥): In this case, we make precise the argument that if any of the smaller instances has a solution,
then so does the bigger one.
F (m,b) ≥ F (m− 1, b) because if there is indeed a subset T of {1,2, . . . ,m− 1} which sums to
b, then T also a subset of {1,2 . . . ,m} that sums to b. Similarly, F (m,b) ≥ F (m − 1, b − am)

because if there is indeed a subset T of {1,2, . . . ,m − 1} which sums to b − am, then T + am is
also a subset of {1,2 . . . ,m} that sums to b.

5. Implemetation Pseudocode. The hard part is done! Now, we have to just implement the above
recursive function using smart recursion. Just to belabor the point, let me first again give the the
disastrous implementation by just recursively calling. I provide it below in red: NEVER show this in
public (but writing it privately is a very good idea).

1: procedure RECSUBSUM(m,b):
2: ▷ Returns 1 if there is a subset of a1, . . . , am that sums to exactly b.
3: if b = 0 then:
4: return 1

5: if m = 0 and b > 0 then:
6: return 0

7: if b < 0 then:
8: return 0

9: return max (RECSUBSUM(m − 1, b), RECSUBSUM(m − 1, b − am) )

4



The above algorithm is correct (we are still solving the decision version). But it is disastrous for the
reason the recursive Fibonacci algorithm was terrible. However, we now know how to fix it. One
could use memoization. I like to use tables, because the table will also help me recover the subset if
the answer is 1.

First we allocate space for a table. The dimensions correspond to the variables that are passed in the
recurrence. The range is from the base-case to the point we are interested in.

1: procedure SUBSETSUM(B, a1, . . . , an):
2: ▷ Says YES if there is a subset summing to B, otherwise N0
3: Allocate space F [0 ∶ n,0 ∶ B] ≡ 0
4: F [m,0]← 1 for all m.
5: F [0, b]← 0 for all b > 0. ▷ Base Cases
6: for 1 ≤m ≤ n do:
7: for 1 ≤ b ≤ B do:
8: if b − am < 0 then: ▷ We know F (m − 1, b − am) = 0 in this case
9: F [m,b]← F [m − 1, b].

10: else:
11: F [m,b]←max (F [m − 1, b], F [m − 1, b − am])

12: ▷ At this point F [n,B] has the answer; if it is 1 there is a solution, otherwise not.

6. Recovery Pseudocode. The above algorithm works because the “table” F [m,b] contains the function
value F (m,b). However, we need more : we need that when F [n,B] = 1, we need a subset S which
sums to B. How do we find this?

One inefficient way to do this is that instead of F [m,b] being 0 or 1, we actually also store a subset
of {1,2, . . . ,m} summing to b in the case F [m,b] = 1. This blows up the space required by a factor
n since each table could contain Θ(n) elements. But we don’t need this; since we have the full table
F [0 ∶ n,0 ∶ B], we can use it to read out the subset which sums to B as follows.

We start with an empty subset and “counters” m = n and b = B. We have F [n,B] = 1 (otherwise,
we have answered NO). But since F [n,B] = max(F [n − 1,B], F [n − 1,B − an]), at least one of
these two must be 1. If F [n − 1,B] = 1, then we decrease nothing from B and decrease n by 1. If
F [n − 1,B − an] = 1, then we add the index n to the subset and decrease B by an and n by 1. We
proceed iteratively, maintaining the invariant that the total sum of the subset plus the “current B”, that
is b, equals the original B and F [m,b] = 1. In the end, we reach m = 0 and since F [m,b] = 1, we
must have b = 0 (the only base case with m = 0 that evaluates to 1.) At this point the subset we have
sums to exactly B. The pseudocode for the recovery is given below giving below. There is no need to
write this part separately, and should be included with the previous.

5



1: procedure RECOVERSUBSETSUM(F [0 ∶ n,0 ∶ B]):
2: ▷ This is taking input the filled up table F from previous routine. There is no need to

write this separately, and ideally should be part of the same code.
3: if F [n,B] = 0 then:
4: return NO
5: ▷ Recovery:
6: m← n; b← B; S ← ∅.
7: ▷ Invariant: ∑i∈S ai + b = B and F [m,b] = F [n,B] = 1
8: while b > 0 do:
9: if F [m − 1, b] = 1 then:

10: m←m − 1
11: S ← S
12: b← b
13: else: ▷ In this case, we must have F [m − 1, b − am] = 1

14: m←m − 1
15: S ← S +m
16: b← b − am
17: ▷ Check that the Invariant holds in both cases
18: ▷ At this point, b = 0. Since invariants hold, we have ∑i∈S ai + 0 = B.
19: return S

7. Running Time and Space. The final part is to analyze the running time and space required by the
algorithm. For Subset Sum, we observe that the running time is dominated by the two for loops. Thus
the total time is O(nB).

Theorem 1. SUBSET SUM can be solved in time and space O(nB).

To recap, to design and analyze a dynamic program for the Subset Sum problem we had the following
ingredients. This is going to be the steps in all dynamic programming algorithms. Indeed, for your problem
set, I require you to write all of these.

1. Definition: A precise definition of the function which will be recursively represented. Clearly mention
the parameters which you are interested in.

2. The Base case: The “small” values at which the function’s value is known.
3. The Recurrence Relation: Clearly state the recurrence relation. Give an explanation of why it is

correct.
4. Proof: To be absolutely sure, give a proof of the recurrence relation.
5. Implemetation Pseudocode Write the correct implementation of the recurrence a la Fibonacci using

tables. Be sure that you are filling up the tables in the correct order. Often this is standard, but you
will see some tricky examples.

6. Recovery Pseudocode. Write the code for recovery (when needed) by back-tracking on the table that
you obtained. This may seem non-trivial, but it is actually straightforward after a little practice.

7. Running Time and Space. Write down the running time of and also space used by your algorithm.

6



Remark: Was the algorithm for SUBSETSUM a polynomial time algorithm? To answer this, we need to
define clearly what a polynomial time algorithm is. An algorithm is polynomial time, if its running time
T (n) is, for large enough n, at most some fixed polynomial p(n) where n is the size of the instance.
We cheekily left out the size of the Subset Sum problem; the size after all is Θ(logB +∑

n
i=1 log ai) =

O(n logB) since we can throw away any ai > B. Now we observe that our running time O(nB) is
exponentially larger than the size of the problem; the B is the nub. As stated, the above algorithm is
not a polynomial time algorithm.

7


	Subset Sum

