
CS31 (Algorithms), Spring 2020 : Lecture 8
Date:

Topic: Dynamic Programming 3: String Problems
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.

Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

In this lecture, we will look at another type of poster-child problems for dynamic programming: “string”
problems. The input to these problems will be strings of the form s[1 ∶ n] where each s[i] will be from
some alphabet Σ; the alphabet could be {0,1}, the Roman alphabet, or {A,C,G,T}, depending on the
applications.

1 Longest Common Subsequence (LCS)

Given a string s[1 ∶ n] a subsequence is a subset of various “coordinates” in the same order as the string.
Formally, a length k subsequence is a string σ = (s[i1] ○ s[i2] ○ . . . ○ s[ik]) where 1 ≤ i1 < i2 < ⋯ < ik ≤ n.
For example, if the string is algorithms, of length 10, then lot is a subsequence with i1 = 2, i2 = 4, and
i3 = 7. Similarly, grim is a subsequence. But, list is not a subsequence.

Remark: Note that the i1, i2, . . . , ik need not be contiguous; if they are indeed contiguous, then the
subsequence is called a substring. The number of substrings are at most O(n2), the number of subse-
quences can be O(2n) (do you see this?).

Given two strings s[1 ∶ m] and t[1 ∶ n], a string σ is a common subsequence if it appears in both as a
subsequence. Formally, if ∣σ∣ = k then there exists (i1 < . . . < ik) and (j1 < . . . < jk), such that s[ir] = t[jr]
for all 1 ≤ r ≤ k. Once again, the locations don’t need to be the same, that is, ir needn’t be jr. For example,
if s = algorithms and t = computers, then the string σ = oms is a subsequence with (i1, i2, i3) = (4,9,10)
and (j1, j2, j3) = (2,3,9).

LONGEST COMMON SUBSEQUENCE

Input: Two strings s[1 ∶m] and t[1 ∶ n].
Output: Return a longest common subsequence between s and t.
Size: m,n.

As remarked before the problem definition, the number of subsequences can be exponentially many and
brute-forcing over them is not a great idea. Once again, the idea from dynamic programming will give a
much more efficient algorithm.

As in SUBSET SUM and KNAPSACK, we imagine the longest common subsequence σ∗ of s and t.
Suppose ∣σ∗∣ = k, and for the time-being suppose we just want this value k. We will recover the actual
subsequence later. Let us try to get “solutionettes” from σ∗ by considering the “last” element of σ∗[k]. We
assert the following (all assertions will be proved formally later).

• Case 1: σ∗[k] ≠ s[m] and σ∗[k] ≠ t[n]. This happens, for example, when s is apple and t is apply
and σ∗ is appl. In this case σ∗ itself is the LCS of s[1 ∶m − 1] and t[1 ∶ n − 1].

• Case 2: σ∗[k] = s[m] and σ∗[k] ≠ t[n]. This happens, for example, when s is appal and t is apply
and σ∗ is appl. In this case σ∗ is the LCS of s[1 ∶m] and t[1 ∶ n − 1].

1

• Case 3: σ∗[k] ≠ s[m] and σ∗[k] = t[n]. This is absolutely symmetric to Case 2: in this case σ∗ is
the LCS of s[1 ∶m − 1] and t[1 ∶ n].

• Case 4: σ∗[k] = s[m] and σ∗[k] = t[n]. This happens, for example, if s is appal and t is appeal
and σ∗ is appl. In this case σ∗[1 ∶ k − 1] is the LCS of s[1 ∶m − 1] and t[1 ∶ n − 1].

Therefore, from the instance I = (s[1 ∶ m], t[1 ∶ n]), we get three smaller subinstances I1 = (s[1 ∶

m−1], t[1 ∶ n−1]), I2 = (s[1 ∶m], t[1 ∶ n−1]), and I3 = (s[1 ∶m−1], t[1 ∶ n]), and it seems that given the
solutions to I1, I2, I3 one can obtain the solution to I (once again, formal proof later). If one were to draw the
recursion tree more, one would observe that a “typical subinstance’; would look like I ′ = (s[1 ∶ i], t[1 ∶ j]).
Thus, these are parametrized by 0 ≤ i ≤ m and 0 ≤ j ≤ n, and so can be arranged in an (m + 1) × (n + 1)
grid. The base case: when i = 0 or j = 0, that is when one of the strings is empty, the length of the LCS
will also be 0. We have all the ingredients for the dynamic programming solution which we now rigorously
provide below.

1. Definition: For any 0 ≤ i ≤ m and 0 ≤ j ≤ n, let us use LCS(i, j) to be the length of the longest
common subsequence of s[1 ∶ i] and t[1 ∶ j]. We are interested in LCS(m,n).

Since this is an optimization problem, as in the case of knapsack, it is useful to introduce the notation
of Cand(i, j). Let Cand(i, j) to be the set of all common subsequences of the strings s[1 ∶ i] and
t[1 ∶ j]. With this notation, we get

LCS(i, j) = max
σ∈Cand(i,j)

∣σ∣

2. Base Cases: LCS(0, j) = 0 for all 0 ≤ j ≤ n and LCS(i,0) = 0 for all 0 ≤ i ≤m.

3. Recursive Formulation: Let 1i,j be the indicator variable defined as

1i,j =

⎧⎪⎪
⎨
⎪⎪⎩

1 if s[i] = t[j]
0 otherwise

For all i > 0, j > 0:

LCS[i, j] = max(LCS[i − 1, j], LCS[i, j − 1], LCS[i − 1, j − 1] + 1i,j)

4. Formal Proof:

(≥): Let σ be the subsequence in Cand(i − 1, j) of length LCS(i − 1, j). Since Cand(i − 1, j) ⊆

Cand(i, j), we get LCS(i, j) ≥ LCS(i − 1, j) since the former maximizes over a super-set.
Similarly, LCS(i, j) ≥ LCS(i, j − 1) and LCS(i, j) ≥ LCS(i − 1, j − 1). Finally, we note if
σ′ ∈ Cand(i − 1, j − 1) and s[i] = t[j], then σ′ ○ s[i] is a common subsequence in Cand(i, j).
This implies, LCS(i, j) ≥ LCS(i − 1, j − 1) + 1i,j .

(≤): Let σ∗ be the subsequence in Cand(i, j) of length LCS(i, j). Let k = ∣σ∗∣. Now repeat the
arguments in the 4 cases above.

– Case 1: σ∗[k] ≠ s[i] and σ∗[k] ≠ t[j]. Then σ∗ ∈ Cand(i−1, j−1). Therefore, LCS(i, j) ≤
LCS(i − 1, j − 1) = LCS(i − 1, j − 1) + 1i,j .

2

– Case 2: σ∗[k] = s[i] and σ∗[k] ≠ t[j]. Then σ∗ ∈ Cand(i, j − 1) and so LCS(i, j) ≤

LCS(i, j − 1).
– Case 3: σ∗[k] ≠ s[i] and σ∗[k] = t[j]. Then σ∗ ∈ Cand(i − 1, j) and so LCS(i, j) ≤

LCS(i − 1, j).
– Case 4: σ∗[k] = s[m] and σ∗[k] = t[n]. Then σ∗ −σ[k] ∈ Cand(i− 1, j − 1), and 1i,j = 1.

Therefore, LCS(i, j) − 1 ≤ LCS(i − 1, j − 1), implying LCS(i, j) ≤ LCS(i − 1, j − 1) + 1i,j .

In each case, LCS(i, j) is less than one of the three things in the RHS.

5. Pseudocode for computing LCS[m,n] and recovery pseudocode:

1: procedure LCS(s[1 ∶m], t[1 ∶ n]):
2: ▷ Returns the longest common subsequence of s and t.
3: Allocate space L[0 ∶m,0 ∶ n] ▷ L[i, j] will contain the length of the LCS of s[1 ∶ i] and
t[1 ∶ j].

4: L[0, j] ← 0 for all 0 ≤ j ≤ n and L[i,0] ← 0 for all 0 ≤ i ≤m. ▷ Base Cases.
5: for 1 ≤ i ≤m do:
6: for 1 ≤ j ≤ n do:
7: L[i, j] ←max(L[i − 1, j], L[i, j − 1], L[i − 1, j − 1] + 1i,j)

8: ▷ L[m,n] now contains the value of the longest common subsequence
9: ▷ Below we show the recovery pseudocode

10: i←m; j ← n; σ = [].
11: ▷ Invariant: ∣σ∣ +L[i, j] = L[m,n]
12: while i > 0 and j > 0 do:
13: if L[i, j] = L[i − 1, j − 1] + 1i,j then:
14: if 1i,j = 1 then:
15: Append s[i] to the front of σ.
16: ▷ We are forming σ from right to left.
17: i← i − 1; j ← j − 1
18: else if L[i, j] = L[i − 1, j] then:
19: i← i − 1
20: else: ▷ We must have that L[i, j] = L[i, j − 1]

21: j ← j − 1

22: return σ

Note that in the recovery the invariant always holds and at the end since L[0, j] = 0 or L[i,0] = 0, we
have ∣σ∣ = L[m,n].

6. Running time and space The above pseudocode take O(mn) time and space.

Theorem 1. The LONGEST COMMON SUBSEQUENCE between two strings can be found in O(nm)

time and space.

3

2 Edit Distance

This is a similar problem to the longest common subsequence problem. Given two strings s[1 ∶ m] and
t[1 ∶ n], the edit distance is notion of distance between s and t defined using 3 operations. The first is
the insert operation, ins(s, i, c), which inserts character c between s[i − 1] and s[i], thus making s longer;
del(s, j) deletes s[j] from s making it shorter; and sub(s, i, c) replaces s[i] with the character c keeping
the length the same. Each operation costs 1 unit. The edit distance between s[1 ∶ m] and t[1 ∶ n] is the
minimum number of operations above that are required to convert s into t. This is denoted as ED(s, t).

For example, if s is apple and t is banana, then ED(s, t) ≤ 5 since one can go from apple→ bapple→

banple → banale → banane → banana. The operations are ins(s,1, b), sub(s,3, n), sub(s,4, a),
sub(s,5, n), and sub(s,6, a).

EDIT DISTANCE

Input: Two strings s[1 ∶m] and t[1 ∶ n].
Output: Return ED(s, t).
Size: m,n.

The edit distance can be computed by almost the same algorithm as above for LCS.

1. Definition: For any 0 ≤ i ≤ m and 0 ≤ j ≤ n, let us use ED(i, j) to be the edit distance between the
strings s[1 ∶ i] and t[1 ∶ j]. We are interested in ED(m,n).

What should Cand(i, j) be? Since the edit distance is the smallest number of “string operations”
(ins/del/sub), let’s define Cand(i, j) as the all possible sequences π of string operations which take
s[1 ∶ i] to t[1 ∶ j]. Armed with this notation, we get

ED(i, j) = min
π∈Cand(i,j)

∣π∣

2. Base Cases:

ED(0, j) = j for all 0 ≤ j ≤ n and ED(i,0) = i for all 0 ≤ i ≤ m. There is only one way to go from
an empty string to a string j – keep inserting. There is only one way to from a string of length i to an
empty string – keep deleting.

3. Recursive Formulation: As before, let 1i,j be the indicator variable defined as

1i,j =

⎧⎪⎪
⎨
⎪⎪⎩

1 if s[i] = t[j]
0 otherwise

For all i > 0, j > 0:

ED[i, j] = min(1 + ED[i − 1, j], 1 + ED[i, j − 1], (1 − 1i,j) + ED[i − 1, j − 1])

4. Formal Proof:

(≤): Let π be the sequence of operations in Cand(i − 1, j) of length ED(i − 1, j). Consider the
sequence of operations π′ = del(s, i) ○ π, which first deletes the last entry of s[1 ∶ i] to get s[1 ∶
i − 1], and then follows the sequence of operations in π to get to s[1 ∶ j]. Thus, π′ ⊆ Cand(i, j)

4

and ∣π′∣ = 1 + ∣π∣ = 1 + ED(i, j). Therefore, we get ED(i, j) ≤ 1 + ED(i − 1, j) since the former
is minπ∈Cand(i,j) ∣π∣. Similarly, one can show ED(i, j) ≤ 1 + ED(i, j − 1); the only difference is
that we would ins(t[1 ∶ j − 1], t[j], j) at the end of doing π.
Finally, suppose π was a sequence of operations that took s[1 ∶ i − 1] to t[1 ∶ j − 1] and whose
length was ED(i − 1, j − 1). If s[i] = t[j], then π also takes s[1 ∶ i] to t[1 ∶ j]. If s[i] ≠ t[j],
then consider the sequence π′ = sub(s, t[j], i) ○ π; this takes s[1 ∶ i] to t[1 ∶ j]. Note that
∣π′∣ = (1 − 1i,j) + ∣π∣ = (1 − 1i,j) + ED(i − 1, j − 1).

(≥): Let π∗ be the sequence of operations which took s[1 ∶ i] to t[1 ∶ j]. Note that, in π∗, either
s[i] is deleted from the end of string, or t[j] is inserted to the end of the string, and if neither of
these two occur, we must either substitute s[i] and t[j], or they are the same. In the first case,
consider the sequence of operations π which is π∗ without the deletion. Observe, that π acting
on s[1 ∶ i − 1] would take us to t[1 ∶ j]. Thus, ∣π∗∣ = 1 + ∣π∣ ≥ 1 + ED(i − 1, j). Similarly, in the
second case, consider the sequence π which is π∗ without the insertion. π takes us from s[1 ∶ i]
to t[1 ∶ j − 1], and thus, in this case, ∣π∗∣ ≥ 1 + ED(i, j − 1). Finally, if neither of the above two
occur, then either s[i] = t[j] in which case π∗ actually takes s[1 ∶ i − 1] to t[1 ∶ j − 1]. That is,
π∗ ≥ ED(i − 1, j − 1) = (1 − 1i,j) + ED(i − 1, j − 1) since s[i] = t[j]. Or, s[i] ≠ t[j], and there
is a substitution. And in this case, π defined as π∗ minus that substitution takes s[1 ∶ i − 1] to
t[1 ∶ j − 1]. Again giving, π∗ ≥ 1 + ED(i − 1, j − 1) = (1 − 1i,j) + ED(i − 1, j − 1) in this case.
In sum, in all of the possible cases, ED(i, j) = ∣π∗∣ is larger than one of the things in the RHS
paranthesis.

5. Pseudocode for computing ED(m,n).

1: procedure ED(s[1 ∶m], t[1 ∶ n]):
2: ▷ Returns the edit distance between s and t.
3: Allocate space E[0 ∶m,0 ∶ n] ▷ E[i, j] will contain the edit distance between s[1 ∶ i] and
t[1 ∶ j].

4: E[0, j] ← j for all 0 ≤ j ≤ n and E[i,0] ← i for all 0 ≤ i ≤m. ▷ Base Cases.
5: for 1 ≤ i ≤m do:
6: for 1 ≤ j ≤ n do:
7: E[i, j] ←min(E[i − 1, j], E[i, j − 1], E[i − 1, j − 1] + (1 − 1i,j))

8: return E[m,n].

6. Running time and space The above pseudocode take O(mn) time and space.

Theorem 2. The EDIT DISTANCE between two strings can be found in O(nm) time and space.

b

Exercise: Write the recovery pseudocode, that is, which gives the sequence of operations which take
s[1 ∶ n] to t[1 ∶m]. Run it to see how to get from apple to banana.

5

	Longest Common Subsequence (LCS)
	Edit Distance

