What should I know before taking CS 30

- **Boolean Variables.** Boolean variables or simply booleans are the most basic unit of data: the *bit*. The bit takes two values: 1 or "True", and 0 or "False".
- Numbers and Arithmetic. There are many types of numbers: *natural/whole numbers* {0, 1, 2, 3, ..., }, *integers* {..., -2, -1, 0, 1, 2, ...}, which also include negative numbers, *rational numbers*, which are of the form p/q where both p and q are integers, and *real* numbers which can represented on the number line can be approximately represented by *decimals*.
- Intervals on the Number Line. For any two reals, $a \le b$, we define the interval [a, b] to be all reals x such that $a \le x \le b$. If any of the square brackets is replaced by a paranthesis, then the corresponding inequality becomes a strict equality. So, (a, b] denotes all x such that $a < x \le b$.
- Arithmetic. Any two numbers can be added, subtracted, multiplied, and divided. Rationals are *closed* under these *operations*, that is, the sum/difference/product/ratio of any two rationals is rational. This is *not true* for integers.
- Prime and Composite Numbers. A positive number p is *prime* if the only numbers dividing it (that is, leaving 0 remainder) are 1 and p. Otherwise, the number is composite. The only exception to the rule is 1 which is neither prime nor composite. For instance, 17 is a prime, but $323 = 17 \times 19$ is not.
- GCD and Relatively Prime Numbers. The *greatest common divisor* (GCD) of two positive numbers *a* and *b* is the largest number *g* which divides both *a* and *b*. So the GCD of 15 and 24 is 3. Two numbers are *coprime* or *relatively prime* if their GCD is 1. Two *different* prime numbers are clearly coprime (do you see why?), for instance (3,5) are coprime. But neither of these numbers need to be primes; for instance (10,21) are coprime but neither are primes.
- **Prime Factorization.** Any composite number *n* can be *uniquely* written as a product of primes (uniquely upto changing the ordering of multiplication). This is the *prime factorization theorem*. This is a non-trivial fact which we may or may not prove in CS 30.
- Floors and Ceilings. Given any real number x, the floor $\lfloor x \rfloor$ is the largest integer smaller than or equal to x. So, $\lfloor 2 \rfloor = 2$, and $\lfloor 1.5 \rfloor = 1$, and $\lfloor -2.7 \rfloor = -3$. Similarly, the ceiling $\lceil x \rceil$ is the smallest integer larger than or equal to x. So, $\lceil 2 \rceil = 2$ and $\lceil 1.5 \rceil = 2$ and $\lceil -2.7 \rceil = -2$.
- Exponentiating. Given any positive integer n and any real x, the number x^n is a shorthand for $x \cdot x \cdot x \cdots x$, where x is multiplied with itself n times. So, $3^2 = 9$ and $(1.5)^2 = 2.25$ and $(-1)^3 = -1$.

The number x^0 is defined to be 1 for any x. So, $3^0 = 1$ and $(-1)^0 = 1$, and also $0^0 = 1$. The last is really tricky – what is 0 multiplied by itself never ... well in multiplication you assume there is a "base" 1 to which things are being multiplied, and if 0 is multiplied to it never, we will have 1.

For any positive rational number p/q, we define $x^{p/q}$ as the number y such that y^q (that is y multiplied by itself q times) equals x^p . If there are more than one such value, we will take

the largest one. For example, $4^{1/2} = 2$ since $2^2 = 4$, although $(-2)^2 = 4$, as well. On the other hand, $(-27)^{1/3} = -3$. In general, y need not be an integer, nor a rational number, but if x is positive, it is always a *real number*. The special case of p = 1 is called the *qth root*; in particular, the 2th root of x is called the *square root*, and is denoted as \sqrt{x} .

For a positive real number y, the definition of x^y requires limits. We can approximate x^y by taking a rational number p/q which approximates y well, and then returning $x^{p/q}$.

Finally, for any negative number y = -z, we define $x^y = x^{-z} := 1/x^z$.

Some properties of exponentials: For any reals x, y and any rational a, b, we have

1. $x^{a+b} = x^a \cdot x^b$ 2. $(xy)^a = x^a \cdot y^a$

2.
$$(xy)^a = x^a \cdot y$$

3. $(x^a)^b = x^{ab}$

The above properties follow easily if *a* and *b* were integers. Do you see why this is true for rationals?

• Logarithms. The *logarithm* of a *positive* number *a* to the *positive base* $b \neq 1$, denoted as $\log_b a$ is the number ℓ such that $b^{\ell} = a$. Thus, $\log_3 81 = 4$ (since $3^4 = 81$) and $\log_{4/3}(16/9) = 2$ (since $(4/3)^2 = 16/9$), and $\log_{\sqrt{2}} 16 = 4$ (since $(\sqrt{2})^8 = 16$).

Do you see why the logarithm of a non-negative number is undefined? If there were a number $\ell = \log_b a$, then $a = b^{\ell}$. But if *b* is positive, then b^{ℓ} even when ℓ is negative is always positive.

Some properties of logarithms: These properties follow by using the properties of exponential and the definition of logarithms

- 1. $\log_b 1 = 0$ for all b > 0.
- 2. $\log_b(xy) = \log_b x + \log_b y$ for all b, x, y > 0.
- 3. $\log_b(x^y) = y \log_b x$ for all b, x, y > 0.
- 4. $\log_b x = \frac{\log_c x}{\log_c b}$.

The above properties follow easily if *a* and *b* were integers. Do you see why this is true for rationals?

- Basic Formulae. You should be able to deduce the following
 - 1. For any two numbers, $(a + b)^2 = a^2 + 2ab + b^2$
 - 2. For any two numbers, $(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$
 - 3. For any three numbers, $(a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca)$
- **Calculus.** You should brush up your basic calculus a bit (we won't use it much). You should, for example, know the answers to what $\frac{dx^3}{dx}$ and $\frac{de^x}{dx}$ are, and what $\int_4^{19} x^2 dx$ is.

To figure out if you know all this stuff, try the *first 48* problems in Section 2.2.8 (Exercises) from the textbook (don't hand them in.).