
CS 30: Discrete Math in CS (Winter 2019): Lecture 16 Supplement
Date: 1st February, 2019 (Friday)

Topic: A “proof” of Induction
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.

Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

Well-Ordering Principle and proof of the Principle of Mathematical Induction.
To recapitulate, the principle of mathematical (strong) induction (PMI) states that given predicates
P (1), P (2), P (3), . . ., if

• P (1) is true (base case); and

• For all k ∈ N, (P (1) ∧ P (2) ∧ · · · ∧ P (k))⇒ P (k + 1) (inductive case);

then, ∀n ∈ N : P (n) is true.
The “proof” of PMI may seem obvious. Indeed, one can take it as an axiom; a ground truth

which one must assume to build other truths (read theorems). Or, you may assume another equally
obvious sounding principle as an axiom, and prove PMI as a theorem. This principle is very useful to
know, and is called the well ordering principle (WOP).

Any non-empty subset S ⊆ N has a minimum element x ∈ S. (WOP)

An element x ∈ S is minimum if for all y ∈ S \ x, we have x < y.

Remark: Note that S needs to be non-empty. More importantly, note that if S ⊆ Z, then the above
statement is false; consider the set S to be of all negative integers. Finally, note if S ⊆ Q+, that is, if
it is a subset of positive rationals, then the statement would be false too. Indeed, let S be the set of all
rationals strictly greater than 0. Do you see why S doesn’t have a minimum?

This is quite a useful principle. We first show a proof of PMI, and then show how one can use
WOP directly to prove a statement we already proved by induction.

Proof of PMI. Suppose PMI were false. That is, the base case and the inductive case holds, but
P (n) is false for some non-negative integer n. Indeed, let S ⊆ N be the subset of non-negative
integers n for which P (n) is false. By our supposition, S is non-empty. Therefore, by WOP, S has a
minimal element x.

Now x > 1 because P (1), as we know by the base-case, is true. Thus the set {1, 2, . . . , x − 1}
is not empty. Furthermore, since 1, 2, . . . , x − 1 are all strictly < x, and x is the minimum element
of S, none of these elements can be in S. Therefore, P (1), P (2), . . . , P (x − 1) are all true. Thus,
P (1) ∧ · · · ∧ P (x− 1) is true. The inductive case then implies P (x) is true. But this contradicts the
fact that x ∈ S. Thus our supposition is false, and hence PMI is true. �
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Prime Factorization. We prove the following statement

For all positive integer n ≥ 2, n can be factored into a product of primes. (1)

Suppose not, and let S ⊆ N be the set of numbers ≥ 2 which can’t be factored as a product
of primes. By supposition, S is non-empty. Let x be the minimal element in S. Now, x can’t
be a prime; it is trivially a product of primes. Thus, x = n · m for some two natural numbers
2 ≤ n,m < x. Since both are < x, they can’t lie in S. Thus, n can be expressed as a product of
primes, and so can m. And thus, x = n ·m can be expressed as a product of primes contradicting
x ∈ S. Thus, the supposition must be wrong, implying (1).
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