
CS 30: Discrete Math in CS (Winter 2019): Lecture 17
Date: 4th February, 2019 (Monday)

Topic: Combinatorics: Product and Sum Principles
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.

Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

The area of combinatorics is all about counting. It is an important tool in various areas; in CS,
this is relevant to, say, figuring out if we have enough IP addresses for the websites, or if we have
enough time to brute-force a certain problem. In the coming 3-4 classes, we will see some methods
to count objects.

1. Counting Sequences: Product Principle.

Often we need to count the number of length k sequences satisfying certain properties; call
such sequences valid. Suppose the properties governing these sequences lead to the follow-
ing choice rule for “building a valid sequence character-by-character”. There are n1 possi-
bilities for the first character of the sequence. That is, if we look at all the allowed sequences,
the first character has n1 possibilities. So we can pick one of them to be the first character.
Given the choice of the first character, no matter what the choice was, suppose the second char-
acter has n2 choices. That is, if we look at all the valid sequences whose first character is
fixed to some character, the second character has n2 choices. Similarly, Given the choice of the
first and the second character, no matter what these choices are, suppose the third character
has n3 choices. More generally,

For any 1 ≤ i < k, Given the choices of the first i characters, no matter what they are, suppose
the (i+ 1)th character has ni+1 choices.

Then, the total number of such sequences are n1 · n2 · · · · · nk.

Examples:

(a) Number of Bit Strings. How many length k-bit strings are there? Think of the bit-string
as a sequence of length n where each character is 0 or 1. Imagine trying to build one
such bit-string bit-by-bit. There are, therefore, 2 ways to choose the first bit. So n1 = 2.
Now, given any choice of the first bit, 0 or 1, the second bit of a valid bit string could be
0 or 1. Therefore, n2 = 2. Similarly, no matter how we choose the first i bits, there are
2 choices for the (i+ 1)th bit. The product rule therefore implies that the number of bit
strings is 2× 2× · · · 2 = 2k.
A notation: the set of bit strings of length n is often denoted by {0, 1}n.

(b) Number of Constrained Bit Strings. How many length n-bit strings are there whose first
two bits are the same? Again, let’s try building a valid bit-string bit-by-bit. The first
bit has 2 choices – it could be 0 or 1. But once the first bit has been fixed, say to 0, then
the second bit has only one choice; it has to be fixed to 0. But once the first two bits are
fixed, either to 00 or 11, the third bit is back to having 2 choices; no constraint on the
third bit. Same for the fourth, fifth, and ... nth bit. Thus, the number of bit strings with
the first two bits same are 2 · 1 · 2 · · · 2 = 2n−1. b
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Exercise: How many length n-bit strings are there whose first 5 bits are the same? Assume
n ≥ 5.

(c) Number of Permutations. How many permutations of {1, 2, . . . , n} are there? A permu-
tation is an ordering of the elements of the set with no repetitions.
Again, the first entry of the order can be chosen in n ways. Given the first, the second
can be chosen in n − 1 ways. So on and so forth. Thus, the number of permutations of
{1, 2, . . . , n} is

n · (n− 1) · · · 2 · 1 = n!
b

Exercise: How many anagrams (not necessarily in the dictionary) of the word TABLE are
there?

(d) Patterned Strings. How many 4 digit numbers are there whose first two digits must
be even, and the last two digits must be odd? Once again, let us build such 4 digit
numbers, digit-by-digit.
The first digit must be even. Also note it can’t be 0. So it has 4 choices: {2, 4, 6, 8}.
The second digit must be even too. There is no other constraint on it. It can be 0 too.
So it has 5 choices: {0, 2, 4, 6, 8}. The third digit needs to be odd. So it has 5 choices:
{1, 3, 5, 7, 9}, and finally, the fourth digit has 5 choices too: {1, 3, 5, 7, 9}. So the final
answer is 4 · 5 · 5 · 5 = 500. b

Exercise: How many 10 digit numbers are there whose first 5 digits are odd and last 5
digits are even?

(e) Slightly more complicated rules. How many 4 digit numbers are there whose first two
digits sum to 9? Let’s try again the idea of forming such a number digit-by-digit. How
many choices are there for the first digit? The answer is 9 : it has to come from the
set {1, 2, 3, 4, 5, 6, 7, 8, 9}. Given any such choice, how many choices are there for the
second digit? Here we inspect that the answer is 1. No matter, what the first digit is,
the second digit is 9 minus that. In other words, the first digit fixes the second digit.
How about the third digit? Well, that has no constraint, and has 10 possible choices :
{0, 1, . . . , 9}. Same for the fourth digit. Thus all in all, the number of such numbers is
9 · 1 · 10 · 10 = 900. b

Exercise: How many 4 digit numbers are there whose first two digits sum to 8?

(f) Failure of the rule. The rule is not a panacea and will not solve all your problems. In
particular, if the number of choices of a certain ith character changes depending on the
choices for the first (i− 1) characters, then the product rule doesn’t apply.
Examples:

i. How many 4 digit numbers are there whose first two digits sum to less than or equal to
9? Again, let’s try to form such a number digit-by-digit. The first digit indeed has
9 choices as before. However, the number of choices of the second digit depends on
the choice of the first digit. For instance, if the first digit is 1, then the second digit
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has 9 choices: {0, 1, 2, 3, . . . , 8}. But if the first digit is 9, then the second digit is
forced to be 0. Since the number of choices for the second digit depends on what we
choose in the first digit, this rule doesn’t apply.

ii. How many 10-length bit strings are there with no three consecutive 0s? Again, let’s try
to form such a bit string bit-by-bit. The first bit has two choices: {0, 1}. The second
bit, also, has two choices no matter what we choose for the first bit. It is the third
bit where the rule breaks down. Because, if the first two bits were 01, or 10, or 11,
the third bit has two choices: {0, 1}. However, if the first two bits were 00, then
the third bit has only one choice: {1}. Therefore, since the number of choices of the
third bit depends on the choice of the first two bits, we cannot apply the product
rule.

2. Inclusion Exclusion: The Sum Principle. In all the examples above, we wanted to count the
number of “objects” satisfying certain conditions. We saw the product principle as a way to
get many answers, but also saw how it can’t solve everything we want. The next principle
is another very important principle which solves some of the problems we face.

The first step is to think of the “objects satisfying certain conditions” to form a set S. We
want to find out |S|. Then the second step is think of this set S as a union of two or more
sets. The simplest case is when S is a union of two disjoint sets A and B, where it is easier to
figure out the cardinalities |A| and |B|. Since S = A∪B and A∩B = ∅, we have |S| = |A|+|B|.

Examples.

(a) (Counting Passwords: a trivial example) A particular password system allows you to
either have a 3 digit number (first number can be 0) as your password, or a 4-letter
lower-case string as your password? How many passwords are possible?
If S is the set of passwords, we can partition into two sets A and B, where A is the set
of 3 digit numbers and B is the set of 4-letter strings. Clearly S = A∪B and A∩B = ∅.
Furthermore, each of |A| and |B| can be evaluated easily using the product principle.
In particular, |A| = 103 and |B| = 264. Thus, the answer is |S| = |A|+ |B| = 103 + 264.

(b) How many four digit numbers have the sum of first two digits strictly less than 3? As we
saw earlier, the product principle doesn’t quite help since if the first digit is 1, then the
second digit has two choices: {0, 1}, but if the first digit is 2, then the second digit has
only one choice: {0}.
But, as you may already see, this is actually a very simple problem. To illustrate the
above idea though, let us call the set of four digit numbers whose sum of first two
digits is < 3 to be S. Let us partition S into two parts:

A ⊆ S = {all four digit numbers in S whose first digit is 1}

and
B ⊆ S = {all four digit numbers in S whose first digit is 2}

Note, S = A∪B since every four digit number whose sum of first two digits is < 3 has
to begin with either 1 or 2. Furthermore, A ∩ B = ∅; since a number which starts with
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1 cannot start with 2. Finally, both |A| and |B| can be evaluated very easily using the
product principle.
To calculate |A|, let’s construct a number in A digit by digit. The first digit has only one
choice, it is 1. The second digit now has two choices {0, 1}. The third and fourth digits
have 10 choices each. Thus, |A| = 2 · 10 · 10 = 200.
To calculate |B|, let’s construct a number in B digit-by-digit. The first digit has only
one choice, it is the number 2. The second digit now has only one choice {0}. The third
and fourth digit has 10 choices each. Thus, |B| = 1 · 10 · 10 = 100.
Thus, |S| = |A|+ |B| = 300.

Remark: If instead of S = A∪B where A and B were disjoint, if we have S = A∪B∪C
where all three were pairwise disjoint, then |S| = |A| + |B| + |C|. More generally, if we
had S = A1 ∪A2 ∪ · · · ∪Ak where Ai ∩Aj = ∅ whenever i 6= j, then |S| =

∑k
i=1 |Ai|.

b

Exercise: Using the above remark, can you now figure out the number of four digit num-
bers whose first two digits sum up to less than or equal to 9? Hint: divide the set S into 9
disjoint sets depending on what the first digit is.

(c) How many 8-bit strings are there with exactly 2 ones? This is another example where the
product rule spectacularly fails. Do you see it? How will we solve this one?
We think a bit about the condition. How do these bit strings look like? Well, there are
two positions, let us call them i and j, such that the string has 1 in those positions and
0 everywhere else. The positions have the conditions that i 6= j; so let us assume i < j.
Furthermore, 1 ≤ i < j ≤ 8. Once we fix this pair (i, j), we fix the bit-string.
So, to figure out the number of bit strings with exactly two ones, it amounts to figure
out the cardinality of the set of tuples

S = {(i, j) : 1 ≤ i < j ≤ 8}

We can figure out |S| by the sum rule as we did for the above part. For 1 ≤ a ≤ 7, we
let Sa ⊆ S such that Sa := {(a, j) : a < j ≤ 8}. That is, Sa is the subset of tuples of S
where the first thingy is a.
Note Sa∩Sb = ∅ for a 6= b. Note that S = S1∪S2∪· · ·∪S7. Finally, note that |Sa| = 8−a;
upon fixing a, then number of choices of j is {a+ 1, . . . , 8}which is 8− a. Therefore,

|S| =
7∑

a=1

|Sa| =
7∑

a=1

(8− a) = 7 + 6 + 5 + 4 + 3 + 2 + 1 = 28

b

Exercise: If you have understood the above completely, then you can answer the following
question: how many bit strings of length n are there which have exactly 2 ones?

What if we can split S into two sets A and B, but they are not disjoint? No worries – we
already know how to handle this. Answer: Inclusion-Exclusion. So, if we can find two sets
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A and B such that (a) S = A ∪ B, and (b) |A|, |B|, and |A ∩ B| are easier to figure out, then
we can find |S| by using the baby version of the inclusion-exclusion formula.

|S| = |A ∪B| = |A|+ |B| − |A ∩B|

Let’s look at some examples.

Examples.

(a) ATM PIN machine numbers. A four-digit ATM pin (note the first digit can be 0) doesn’t
allow the first three numbers or the last three numbers to be the same. How many PINs
are disallowed?
Let us denote the set of disallowed PINs as S. So a four digit number is in S if its first
three numbers are the same or the last three numbers are the same. By the way the
question is designed, we can see what the two sets should be of which S is the union
of.
Indeed, define A to the set of four digit numbers whose first three digits are the same.
Define B to the set of four digit numbers whose last three digits are the same.
Let’s first see both |A| and |B| are easy to calculate by the product principle. Indeed,
construct an element of A digit-by-digit. The first digit has 10 choices. But once this is
fixed, the second and third digit have 1 choice each. The last digit again has 10 choices.
So, we get |A| = 100. Arguing similarly, we get |B| = 100 as well.
How about the intersection A ∩ B? Are A and B disjoint sets? No. The intersection is
the set of four digit numbers whose first three numbers are the same and the last three
numbers are the same. That is .... A∩B is the set of four digit numbers whose all digits
are the same.
Thus, |A ∩B| is also easy to calculate using the product principle. The first digit has 10
choices. But then it fixes everything else. Thus, |A ∩B| = 10.
The number of disallowed passwords, therefore, is

|S| = |A|+ |B| − |A ∩B| = 100 + 100− 10 = 190

b

Exercise: What is the number of four digit numbers which either have the first two digits
the same or the last two digits the same?

(b) Divisibility. How many numbers between 1 and 100 (both inclusive) are divisible by either 2 or
3 or both?
Let us denote as S the set of numbers between 1 and 100 (both inclusive) which are
divisible by either 2 or 3.
Let A be the set of numbers between 1 and 100 (both inclusive) which are divisible by
2. Let B be the set of numbers between 1 and 100 (both inclusive) which are divisible
by 3. We see that S = A ∪B, and thus,

|S| = |A|+ |B| − |A ∩B|
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What is |A|? It is the number of even numbers, and this number is b100/2c = 50 (do
you see why?) What is |B|? It is given by b100/3c = 33.
What about A∩B? What is this set? It is the set of all numbers between 1 and 100 (both
inclusive) which are divisible by both 2 and 3. That is, these numbers are divisible by
6. There are b100/6c = 16 of them. Thus, the answer we are looking for is

|S| = |A|+ |B| − |A ∩B| = 50 + 33− 16 = 67

b

Exercise: How many numbers between 1 and 100 (both inclusive) are divisible by 4 or by
6 or both?

b

Exercise: How many numbers between 1 and 100 (both inclusive) are divisible by 2 or by
3 but not both?

Why should we stop at describing S as a union of only two sets? We can express S as a union
of 3 sets A,B,C and we can apply the “toddler version” of the inclusion-exclusion formula.
Which remember, states if S = A ∪B ∪ C, then

|S| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|

Using this, you can solve the following examples.

Examples.

(a) How many numbers between 1 and 100 (both inclusive) are divisible by either 2, 3 or 5?
Again, let A be the set of numbers between 1 and 100 (both inclusive) which are divisi-
ble by 2; B be the set of numbers between 1 and 100 (both inclusive) which are divisible
by 3, and C be the set of numbers between 1 and 100 (both inclusive) which are divisible
by 5.
We want to figure out |S|where S = A ∪B ∪ C. We also know,

|A| = 50, |B| = 33, |C| = 20

The set A ∩ B is the set of numbers between 1 and 100 (both inclusive) which are di-
visible by 6. The set A ∩ C is the set of numbers between 1 and 100 (both inclusive)
which are divisible by 10. The set B ∩ C is the set of numbers between 1 and 100 (both
inclusive) which are divisible by 15. The set A ∩B ∩ C is the set of numbers between 1
and 100 (both inclusive) which are divisible by 30.
Thus,

|A ∩B| = 16, |A ∩ C| = 10, |B ∩ C| = 6, |A ∩B ∩ C| = 3

Thus,
|S| = 50 + 33 + 20− 16− 10− 6 + 3 = 74
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