
CS 30: Discrete Math in CS (Winter 2019): Lecture 22
Date: 15th February, 2019 (Friday)

Topic: Probability: Conditional Probability and Independence
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.

Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

1. Some Recap.

With events, we often mix-and-match notation from Boolean Logic and Sets.

• Given an event E , the negation event ¬E is used to denote the event that E doesn’t take
place. That is, it is simply the subset ¬E = Ω \ E . Sometimes, ¬E is denoted as E .

Pr[E ] + Pr[¬E ] = 1

• Given two events E and F , the notation E ∪ F is precisely the union of the subsets in
the sample space. Pr[E ∪F ] captures the likelihood that at least one of the events takes
place.

• Given two events E and F , the notation E ∩F is precisely the intersection of the subsets
in the sample space. Pr[E ∩ F ] captures the likelihood that both the events takes place.

• Two events E and F are disjoint or exclusive if E ∩ F = ∅. That is, they both can’t occur
simultaneously. A collection of events E1, E2, . . . , Ek are mutually exclusive if Ei ∩ Ej = ∅
for i 6= j.

• For mutually exclusive events,

Pr[E1 ∪ E2 ∪ · · · Ek] =
k∑

i=1

Pr[Ei]

• The Inclusion-Exclusion formula (for two events, aka Baby version) tells us

Pr[E ∪ F ] = Pr[E ] + Pr[F ]−Pr[E ∩ F ]

Do you see why? It is exactly the baby-version of inclusion-exclusion if Pr is a uniform
distribution. Indeed, if this is the case then Pr[E ∪ F ] = |E∪F|

|Ω| , and the proof follows by
applying baby IE. What if it is not uniform? b

Exercise: Prove the above even when Pr is not a uniform distribution.

2. Conditional Probability.

Last time, we looked at (semi) formal definitions of sample spaces, events, probability of
outcomes, and probability of events. We now look at a very important concept of conditional
probability. In plain English, these are trying to answer questions of the form

What are the chances of “blah” happening, if we know that “blooh” has already occured?
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Concrete examples:

• What is the probability that a roll of fair die lies in the set {1, 2, 3} given that the roll is
an odd number?

• What is the probability that a roll of two fair dice sums to 6 given that the sum is an
even number?

In both these questions above, there are two events of interest. For example, in the first
example, one event isAwhich occurs when the roll of the fair die lies in the set {1, 2, 3} (this
is really the event we are interested in). But there is also another event, let’s call it B, which
occurs when the roll of the fair die is an odd number. The first question is asking, what is
the probability that A occurs given that B has already occurred.

This probability is different then just Pr[A] or just Pr[B]. It is called the conditional probability
of event A occuring given that B has already occured. And it is denoted as

Pr[A | B]

We will derive the formula for the above, but before that, let’s solve the question one above
using a tree diagram. Below is the tree diagram for a single dice throw. The “blue lightnings”
(the ones on top) indicate the outcomes which lead to the even B, that is, the die comes
out odd. The “red lightning” (the one on bottom) indicates the outcome A which we are
interested in.

1 2 3 4 5 6

1/6 1/6 1/6 1/6 1/6 1/6

When calculating the conditional probability, we are guaranteed that the “blue lightning”
has struck, and among all the outcomes in which the blue lightning strikes, what is the like-
lihood that the red lightning strikes as well. Therefore, when trying to figure out Pr[A | B],
the sample space has changed! It is not Ω any more, but rather it is B.

Since Ω has changed, Pr[·] must change too. How should it change? Here is another as-
sumption we make: given only the promise that B occurs, the relative likelihood of two differ-
ent outcomes in B shouldn’t change. Thus, the new probability distribution, let’s call it Pr′,
over B, should be a scaled version of the old distribution only over the new sample space
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B. That is, Pr′[o] = c · Pr[o] for all o ∈ B where c is some number which guarantees that∑
o∈BPr′[o] = 1. This implies c = 1

Pr[B] . Now, in this new probability distribution Pr′, we
are interested in the outcomes when A occurs. Again note, we are not interested in the out-
comes when A occurs when B doesn’t occur. We are only interested in the outcomes in A∩B
(when both the red and blue lightning strike). Thus, we get Pr[A | B] = Pr′[A ∩ B]. Using
the fact that Pr′[o] = Pr[o]/Pr[B] for all o ∈ B, we get the following formula for conditional
probability. Tattoo this in your head.

Pr[A | B] :=
Pr[A ∩ B]

Pr[B]
(Cond Prob)

Coming back to the dice problem number 1, Pr[B] = 1/2 and Pr[A ∩ B] = 2/6, thus, the
probability that the dice gives a number in {1, 2, 3} when given that the dice gives an odd
number is 2/3. b

Exercise: Solve the second dice problem: what is the probability that a roll of two fair dice sums
to 6 given that the sum is an even number? Use both: the method of conditional probabilities,
and the tree diagram from last time. Are your answers the same?

b

Exercise: I roll two dice. A be the event that the first dice is odd. E is the event that the sum of
the two dice is odd. What is Pr[A | E ]?

3. Chain Rule.

A simple but important consequence of the definition of conditional probability is the chain
rule.

Theorem 1. For any two events A and B, we have Pr[A ∩ B] = Pr[B] ·Pr[A | B]. More
generally, for any collection of events A1,A2, · · · ,Ak, we have

Pr[A1∩A2∩· · ·Ak] = Pr[A1] ·Pr[A2 | A1] ·Pr[A3 | A1∩A2] · · ·Pr[Ak | A1,A2, . . . ,Ak−1]

Applications

• Here’s an example (from the textbook) showing how this is useful: what’s the probability
that 5 randomly drawn cards from a standard deck are all hearts?
Think of drawing these cards one by one from the deck to your hand. Let Ai, for
i = 1, 2, . . . , 5 be the event that the ith card is a heart. We need to figure out Pr[A1 ∩
A2 · · · ∩ A5].
Note:

– Pr[A1] = 13
52 ; there are 13 hearts to begin with, and 52 cards in all.

– Pr[A2 | A1] = 12
51 . Why? Given that A1 has occurred, the deck now is one heart

missing. Thus, there are 51 cards in all and only 12 of them are hearts.
– Similarly continuing, we get Pr[A3 | A1,A2] = 11

50 ; Pr[A4 | A1,A2,A3] = 10
49 ;

Pr[A5 | A1,A2,A3,A4] = 9
48 .
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– Thus, Pr[A1 ∩ · · ·A5] = 13
52 ·

12
51 ·

11
50 ·

10
49 ·

9
48

• b

Exercise: Suppose we take a random ordering of the elements (1, 2, 3, . . . , n). What is the
probability that 1 is in the first place, and 2 is in the second place, 3 is in the third place, 4 is in
the fourth place, and 5 is in the fifth place of this random ordering?

4. The Law of Total Probability.

Sometimes conditioning helps in figuring out probability of events. That is, suppose we are
interested in finding the probability of event A. Sometimes this is easier to do if we already
know whether some event B has taken place or not. Then, we can use the following formula
to figure out the probability of A.

Theorem 2. For any two events A and B,

Pr[A] = Pr[A | B] ·Pr[B] + Pr[A | ¬B] ·Pr[¬B]

Proof. The proof follows by noticing that the event (subset) A can be partitioned into two
disjoint subsets as follows:

A = (A ∩ B) ∪ (A ∩ ¬B)

Convince yourself of this fact.

Thus, Pr[A] = Pr[A ∩ B] + Pr[A ∩ ¬B]. And the theorem follows from the formula for
conditional probability.

In fact, there are two successive generalizations which at times are useful.

Theorem 3. Let B1,B2, . . . ,Bk be mutually exclusive events (that is pairwise disjoint) such
that

∑k
i=1 Pr[Bi] = 1. Then,

Pr[A] =

k∑
i=1

Pr[A | Bi] ·Pr[Bi]

Theorem 4. Let B1,B2, . . . ,Bk be mutually exclusive events (that is pairwise disjoint) with
B1 ∪ B2 ∪ · · · ∪ Bk = B, Then,

Pr[A | B] =

k∑
i=1

Pr[A | Bi] ·Pr[Bi | B]

b
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Exercise: Prove the above two theorems. Exactly the same idea as the proof of the previous
theorem.

Applications:

• In a bag there are two coins. One is a fair coin which, when tossed, lands heads with probability
0.5. The other, however, is a biased coin which, when tossed, lands heads with probability 0.75.
You pick one of the two coins at random. What is the probability you see heads?
You could do this with a tree diagram, but we can also do with the above law of total
probability (it is the same thing!). LetA be the event that we see heads; we are interested
in Pr[A]. Let B be the event we pick a fair coin; so ¬B is the event we pick the biased
coin.
We know, by the problem definition, Pr[A | B] = 0.5 and Pr[A | ¬B] = 0.75. Further-
more, since we pick one of the two coins at random, we gt Pr[B] = 0.5. Therefore, by
the law of total probability,

Pr[A] = (0.5) · (0.5) + (0.75) · (0.5) = 0.625

5. Independent and Dependent Events.

In the example above, the probability that a roll of a fair die is 3 if nothing more is told
(the answer is 1/6) is different from the probability that a roll of a fair die is 3 given that the
roll is an odd number (the answer is 1/3). Thus, the event B, that the roll was odd, told us
something about the event Awhether the roll was 3. B had some dependence on A.

But many times two events may not show such dependence. For example, consider having
two dice. Let A be the event that the first dice rolls a 3. Let B be the event that the second
dice rolls an odd number. Would Pr[A] and Pr[A | B] be different? You may feel of course
not – what does the roll of the second die have to do with the roll of the first die? And you
would be correct. Nevertheless, let’s just calculate Pr[A | B] in this example.

Pr[A | B] =
Pr[A ∩ B]

Pr[B]
=

3
36
3
6

=
1

6
= Pr[A]

where the numerator can be found by drawing the tree diagram as last time. Indeed, the
only outcomes which lead to A ∩ B are {(3, 1), (3, 3), (3, 5)}.
This brings us to a very, very important definition.

Remark: Given a random experiment, two events A and B are independent if and only if
Pr[A | B] = Pr[A]. Equivalently,

Pr[A ∩ B] = Pr[A] ·Pr[B]

Often times, when the outcomes of the two events in consideration are “generated” using
different “sources of uncertainty” (eg, the two dice in the previous example), then these
are independent events. Here are some examples of independent events. Confirm this by
figuring out Pr[A ∩ B], Pr[A], and Pr[B].
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• Two coins are tossed. A is the event the first lands heads, B is the event that the second
lands tails.

• An n-length bit string is picked at random from all n-length bit strings. A is the event
that the first bit is 0. B is the event that the second bit is 0.

• A card is drawn from a standard deck of cards. A is the event that the card’s suit is
hearts. B is the event that the cards rank is King.

• Two fair dice are rolled. A is the event that the first die lands an odd number. B is the
event that the sum of the two dice is an odd number. This is where independence is not
“clear in the English sense”. b

Exercise: Here are some examples of events – figure out which are dependent and which are
independent. Check your intuition by really figuring out Pr[A ∩ B], Pr[A], and Pr[B].

• A box contains three red balls and three blue balls. We first pick a ball at random and throw
it away in the ocean. We then pick a second ball at random. A is the event that the first ball
is blue, and B is the event that the second ball is blue.

• A box contains three red balls and three blue balls. We first pick a ball at random and throw
it back in the box. We then pick a second ball at random. A is the event that the first ball
is blue, and B is the event that the second ball is blue.

• We take a random permutation of the numbers {1, 2, 3, . . . , n}. A is the event that the
number 1 lands in the first place of this random permutation. B is the event that the
number 2 lands in the second place of this random permutation.
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