
CS 30: Discrete Math in CS (Winter 2019): Lecture 26
Date: 25th February, 2019 (Monday)

Topic: Graphs: Handshake Lemma, Walk and Paths
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.

Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

1. What is a graph?

A graph G = (V,E) is defined as a pair of sets (which will be finite sets for this course). The
first set is V called the set of vertices or set of nodes. The second set E is called the set of edges
or set of links. Elements of E are unordered pairs (subsets of size 2) of distinct vertices.

Example: Say V = {1, 2, 3, 4}. Say E = {(1, 2), (2, 3), (1, 4), (3, 4), (2, 4)}. Then G = (V,E) is
one graph on 4 vertices and 5 edges.

Pictorial Representation. Almost everyone I know thinks about graphs pictorially. The vertices
of the graph are drawn as points/circles on the plane. The edges are drawn as straight (or
sometime non-straight) lines. For example, the graph above is pictorially represented as
follows

1

2 3

4

Remark: The pictures are good for intuition. The final proof however, as you know, should
never be using a picture. It should be formal, and I’ll try to give proofs with only words. A
picture is okay for illustration, not demonstration.

2. Why graphs? Graphs are amazing objects to argue about objects which have pairwise re-
lations between them. Perhaps the graph which affects all out lives is the Web Graph. The
nodes are all web-pages in the world; there is an edge between two web-pages if they link
each other. Then there is the Social/Facebook Graph. The nodes are individuals; there is an
edge between two nodes if they are friends.

But graphs come up every where. Molecules are often modeled as graphs in computational
biology. Agents and Items they wish to purchase are often modeled as graphs in economics.
Processors and Jobs are modeled as graphs in scheduling. The list is endless, and Graph
Theory is an extremely important object of study.

1

3. Notations. There is a lot of notation in graph theory; but they are often picturesque and
intuitive. One of the goals of this module is to actually acquaint you of these. Below we fix
a graph G = (V,E).

• Given an edge e = (u, v), the vertices u and v are the endpoints of e. We say e connects
u and v. We say that u and v are incident to e.

• Two vertices u, v ∈ V are adjacent or neighbors if and only if (u, v) is an edge.

• The incident edges on v is denoted using the set ∂(v). So,

∂G(v) := {(u, v) : (u, v) ∈ E}

We lose the subscript if the graph G is clear from context.

• Given a vertex v, the neighborhood of v is the set of neighbors of v. This is denoted
sometimes as N(v) or sometimes as Γ(v). So,

NG(v) := |{(u, v) : (u, v) ∈ E}|

if the graph G is clear from context.

• The cardinality of NG(v) is called the degree of vertex v. We denote it using degG(v).
This counts the number of neighbors of v. Note that,

degG(v) = |NG(v)| = |∂G(v)|

• A vertex v is isolated if its degree is 0. That is, it has no edges connected to it.

• A graph G = (V,E) is called regular if all degrees are equal, that is, degG(v) = degG(u)
for all u and v.

• Given a graph G = (V,E), we use V (G) to denote V and E(G) to denote E. This
notation is useful when we are talking about multiple graphs.

4. Deleting and Inserting Edges and Vertices from a graph.

Fix a graph G = (V,E). Let e = (u, v) be an edge in E. We get a new graph by deleting the
edge e from G. This graph is denoted as G− e or G \ e. V (G \ e) = V and E(G \ e) = E \ e.

G− e := G \ e := (V,E \ e)

Note |V (G \ e)| = |V (G)| but |E(G \ e)| = |E(G)| − 1.

Given a susbet F ⊆ E of edges, we can delete all the edges in F iteratively to get the graph
G − F (this is not a usual notation). In particular, we get the graph G′ defined as G′ =
(V (G), E(G) \ F).

Similarly, we can add/insert edges to G. Let e = (u, v) be a pair of vertices. Then, we get a
new graph by inserting the edge e in G. This graph is denoted as G + e or G ∪ e. Note if e
was already present in E, then G + e = G.

G + e := G ∪ e := (V (G), E(G) ∪ e)

2

We can also delete a vertex. When we delete a vertex, we delete that vertex from the vertex
set and also all the edges adjacent to v. This new graph is called G− v or G \ v.

G− v := G \ v = (V (G) \ v, E(G) \ ∂(v))

Note that, and this is going to be useful, |V (G−v)| = |V (G)|−1 AND |E(G−v)| = |E(G)|−
degG(v). Note that |E(G− v)|may be equal to |E(G)|; this occurs if v was an isolated vertex
in G.

5. Subgraphs and Induced Subgraphs.

A graph H = (W,F) is a subgraph of a graph G = (V,E) if V ⊆W and F ⊆ E, and if (W,F)
is a valid graph. That is, for any edge (u, v) ∈ F , both u and v are in the set W

Given a graph G = (V,E) and a subset W ⊆ V of vertices, the induced subgraph G[W] =
(W,F) where F ⊆ E and any original edge (u, v) ∈ E with both endpoints u, v ∈ W lies in
F .

6. The Handshake Lemma. The first proof in graph theory is something you have already seen
before in a UGP.

Theorem 1. For any graph G = (V,E), we have∑
v∈V (G)

degG(v) = 2|E(G)| (1)

Proof. We have seen a “counting two ways” proof of it in a previous UGP. I am going to
utilize this opportunity to give a different proof based on induction. Induction on graphs is
something we need to get used to. Fast.

Let P (n) be the predicate which is true if for all graphs G = (V,E) with |V | = n, (1) holds.
The theorem is proved if we show ∀n ∈ N : P (n) is true. This predicate should remind you
of predicates we defined for proving correctness of code.

Base Case: Is P (1) true? We need to show for all graphs G = (V,E) with |V | = 1, (1) holds.
If V (G) = {u}, then note that E(G) = ∅ (there are no vertices to connect). Therefore, u is an
isolated vertex. deg(u) = 0. Thus, the LHS of (1) is 0 and so is the RHS.

Inductive Case: Fix a natural number k ≥ 1. Assume P (k) is true. We need to show P (k+1)
is true. That is, we need to show for any graph with k + 1 vertices, (1) holds. To that end, fix
a graph G = (V,E) with |V | = k + 1.

Let w be an arbitrary vertex in G. Consider the graph G′ := G − w (recall the definition of
deletion of a vertex from above). Now observe the following:

For all u ∈ NG(w), degG′(u) = degG(u)− 1 (2)

For all u ∈ V (G′) \NG(w), degG′(u) = degG(u) (3)

3

That is, in the new graph G′, the degrees of (in G) neighbors of w go down by 1, while the
degrees of other nodes remain unchanged. Also note by Induction Hypothesis,∑

v∈V (G′)

degG′(v) = 2|E(G′)| (IH)

This is because |V (G′)| = |V (G)| − 1 = k.

Finally, note
|E(G′)| = |E(G)| − |∂G(w)| = |E(G)| − |NG(w)| (4)

Now we have all the ingredients to complete the proof. We get∑
v∈V (G)

degG(v) = deg(w) +
∑

v∈V (G)\w

degG(v) Pulling w out.

= |NG(w)|+
∑

v∈V (G′)

degG(v) Definition of degree.

= |NG(w)|+
∑

v∈NG(w)

degG(v) +
∑

v∈V (G′)\NG(w)

degG(v)

= |NG(w)|+
∑

v∈NG(w)

(degG′(v) + 1) +
∑

v∈V (G′)\NG(w)

degG′(v) Using (2), (3)

= 2|NG(w)|+
∑

v∈V (G′)

degG′(v) Collecting Terms

= 2
(
|NG(w)|+ |E(G′)|

)
= 2|E(G)| Using (4)

We established P (k + 1) and thus, by induction, P (n) is true for all n. That is, the theorem
holds.

7. Perambulations in Graphs. We introduce a lot of definitions involving alternating sequence
of vertices and edges. These are key definitions so make sure you understand them. Through-
out below we fix a graph G = (V,E).

• A walk w in G is an alternating sequence of vertices and edges

w = (v0, e1, v1, e2, v2, . . . , ek, vk)

such that the ith edge ei = (vi−1, vi) for 1 ≤ i ≤ k. Intuitively, imagine starting at
vertex v0, using the edge e1 to go to the adjacent vertex v1, and then using e2 to go to
the adjacent (to v1) vertex v2, and so on and so forth till we reach vk. Note, by this
constraint above the identity of the edges are defined by the vertices, and so telling
them explicitly is redundant. Nevertheless, when talking about a walk, one explicitly
writes down the edges.
Note both the edges and vertices could repeat themselves. That is ei could be the same
as ej for j 6= i. In fact, ei+1 could be the same as ei; this would mean going from one
endpoint of ei to the other and immediately returning back.

4

The walk above is said to start at v0 and end at vk. The node v0 is often called the
source/origin and the node vk is often called the sink/destination. If there is a walk as
described above, then we often say “there is a walk from v0 to vk.”
A walk is of length k if there are k edges in the sequence. Note that since repetition of
both vertices and edges are allowed, walks could go on for ever.

• A trail t in G is a walk with no edges repeating. That is, a trail is also an alternating
sequence of vertices and edges

t = (v0, e1, v1, e2, v2, . . . , ek, vk) where the ei’s are distinct

Note that a trail could repeat vertices. For instance, if the graph was
G = ({a, b, c, d, e}, {(a, b), (b, c), (c, d), (d, b), (b, e)}), then the following is a valid trail.
The vertex b is repeated.

t = (a, (a, b), b, (b, c), c, (c, d), d, (d, b), b, (b, e), e)

Also note that a trail cannot be arbitrarily long. A trail’s length is at most |E|.
• A path p in a graph G is a walk with no vertices repeated. Note that a path is always

a trail. In fact, a path is a trail with no vertices repeating. Oftentimes, for describing
paths, the alternating edges are dropped. So for instance

p = (v0, v1, . . . , vk) actually stands for (v0, (v0, v1), v1, (v1, v2), v2, · · · , (vk−1, vk), vk)

Theorem 2. Let G = (V,E) be a graph and u and v be two distinct vertices in V (G). If
there is a walk from u to v in G, then there is a path from u to v.

5

