CS 30: Discrete Math in CS (Winter 2019): Lecture 27

Date: 27th February, 2019 (Wednesday) Topic: Graphs: Connectivity, Trees Disclaimer: These notes have not gone through scrutiny and in all probability contain errors. Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

- 1. **Perambulations in Graphs.** We introduce a lot of definitions involving alternating sequence of vertices and edges. These are key definitions so make sure you understand them. Throughout below we fix a graph G = (V, E).
 - A *walk* w in G is an *alternating sequence* of vertices and edges

$$w = (v_0, e_1, v_1, e_2, v_2, \dots, e_k, v_k)$$

such that the *i*th edge $e_i = (v_{i-1}, v_i)$ for $1 \le i \le k$. Intuitively, imagine starting at vertex v_0 , using the edge e_1 to go to the adjacent vertex v_1 , and then using e_2 to go to the adjacent (to v_1) vertex v_2 , and so on and so forth till we reach v_k . Note, by this constraint above the identity of the edges are defined by the vertices, and so telling them explicitly is redundant. Nevertheless, when talking about a walk, one explicitly writes down the edges.

Note both the edges and vertices could repeat themselves. That is e_i could be the same as e_j for $j \neq i$. In fact, e_{i+1} could be the same as e_i ; this would mean going from one endpoint of e_i to the other and immediately returning back.

The walk above is said to *start* at v_0 and *end* at v_k . The node v_0 is often called the *source/origin* and the node v_k is often called the *sink/destination*. If there is a walk as described above, then we often say "there is a walk from v_0 to v_k ."

A walk is of *length k* if there are *k* edges in the sequence. Note that since repetition of both vertices and edges are allowed, walks could go on for ever.

• A *trail* t in G is a walk with no edges repeating. That is, a trail is also an alternating sequence of vertices and edges

$$t = (v_0, e_1, v_1, e_2, v_2, \dots, e_k, v_k)$$
 where the e_i 's are distinct

Note that a trail *could repeat vertices*. For instance, if the graph was $G = (\{a, b, c, d, e\}, \{(a, b), (b, c), (c, d), (d, b), (b, e)\})$, then the following is a valid trail. The vertex *b* is repeated.

$$t = (a, (a, b), b, (b, c), c, (c, d), d, (d, b), b, (b, e), e)$$

Also note that a trail cannot be arbitrarily long. A trail's length is at most |E|.

• A *path p* in a graph *G* is a walk with no *vertices repeated*. Note that a path is always a trail. In fact, a path is a trail with no vertices repeating. Oftentimes, for describing paths, the alternating edges are dropped. So for instance

 $p = (v_0, v_1, \dots, v_k)$ actually stands for $(v_0, (v_0, v_1), v_1, (v_1, v_2), v_2, \dots, (v_{k-1}, v_k), v_k)$

• A *closed walk* is a walk whose origin and destination are the same vertex. If e = (u, v) is an edge in *G*, then the following is a closed walk of length 2

$$w = (u, e, v, e, u)$$

A closed walk must be of length at least 2.

Note that given a closed walk, we can choose any $v_i \in w$ to be the source *and* the destination using the same vertices and eges of the closed walk. That is, given a closed walk

$$w = (v_0, e_1, v_1, e_2, v_2, \dots, e_k, v_k)$$
 with $v_k = v_0$

and an arbitrary vertex $v_i \in w$ with $1 \le i < k$, we can have another closed walk

 $w' = (v_i, e_{i+1}, v_{i+1}, \dots, e_k, v_k = v_0, e_1, v_1, e_2, v_2, \dots, e_i, v_i)$

Note w' is a closed walk whose source and destination are v_i .

- A *circuit* is a closed trail of length at least 1. That is, it is a trail whose origin and destination are the same vertex, and contains at least one edge. The latter constraint disallows a singleton node from being defined as a circuit. Indeed, a circuit must have at least 3 edges do you see this?
- A *cycle* is a circuit with no vertex other than the source and destination repeating. Thus, a cycle is a path followed by an edge from the destination of the path to the origin, and then the origin node.

Theorem 1. Let G = (V, E) be a graph and u and v be two distinct vertices in V(G). If there is a *finite walk* from u to v in G, then there is a *path* from u to v.

Proof. In the UGP, you see a way to prove the above by induction. There is another (slicker) way of looking at the inductive proof. It involves the "minimal counter example" idea. Goes like this.

Let *W* be the set of all walks from *u* to *v*. We know that there is one of finite length. Pick $w \in W$ to be the walk from *u* to *v* of the *smallest length*. We claim that this walk must be a path.

Suppose not. Suppose *w* is not a path. That is,

$$w = (x_0 := u, e_1, x_1, \dots, e_k, x_k := v)$$

but two vertices, say x_i and x_j with i < j and both $0 \le i, j \le k$, are the same. Then, consider the walk

$$w' = (x_0 := u, e_1, x_1, \dots, x_i, e_{j+1}, x_{j+1}, \dots, e_k, x_k)$$

This walk w' is a smaller length walk than w. But this contradicts the choice of w. Thus, our supposition must be wrong. Therefore, w is a path.

Theorem 2. Let G = (V, E) and u be an arbitrary vertex in V(G) and e be an arbitrary vertex in E(G). If there is a *circuit* in G containing u, then there is a *cycle* in G containing u. If there is a *circuit* in G containing e, then there is a *cycle* in G containing e.

2. Connectivity in Graphs

In a graph G = (V, E), we say a vertex v is *reachable* from u if there is a path starting from v and ending at u.

A graph G = (V, E) is *connected* if any vertex u is reachable from another vertex v. A graph is *disconnected* otherwise.

Given any graph G = (V, E), we can partition it into *connected components*. That is, $V = V_1 \cup V_2 \cup \cdots \cup V_k$ where (a) any two vertices in the same V_i are reachable from one another, and (b) a vertex $u \in V_i$ is *not* reachable from any vertex $v \in V_j$ if $i \neq j$.

Given any graph G = (V, E) and a vertex $u \in V$, the set of vertices $S_u \subseteq V$ which are *reachable* from u is the connected component of G which contains u.

3. Trees.

A graph G = (V, E) is a *forest* if it doesn't contain any cycles.

A forest G = (V, E) is a *tree* if it is connected. That is, a tree G = (V, E) is a connected graph which doesn't contain any cycles.

Theorem 3. Let G = (V, E) be a forest. Then each connected component of *G* induces a tree.

Proof. Let V_1, \ldots, V_k be the connected components of G. Each $G[V_i]$ is connected by definition. If G doesn't contain a cycle, then any subgraph also doesn't contain a cycle. Thus, $G[V_i]$ contains no cycle. Thus $G[V_i]$ is a tree.

There are many equivalent ways to think about trees. We prove some here, and some are left as exercises in the UGP.

Theorem 4. (The Tree Theorem.) Let G = (V, E) be a graph. The following are equivalent statements.

- (a) G is a tree.
- (b) *G* has no cycles and adding any edge to *G* creates a cycle.
- (c) Between any two vertices in *G* there is a unique path.
- (d) *G* is connected, and deleting any edge from *G* disconnects the graph, and the resulting graph has exactly two connected components.
- (e) G is connected and |E| = |V| 1.
- (f) *G* has no cycles and |E| = |V| 1.

Proof.

 $(\underline{a}) \Rightarrow (\underline{b})$: Since *G* is a tree, *G* doesn't contain any cycle. Suppose we add an edge $(u, v) \notin E$ to *G*. Note, there is a path from *v* to *u* in *G* since *G* is connected. Then in the graph H := G + (u, v), there is a cycle which starts from *v*, follows the path to *u*, and then returns to *v* using the new edge (u, v).

 $(\underline{b}) \Rightarrow (\underline{c})$: Fix any two vertices u and v in G. Since G has no cycles, there cannot be *two or more than two* paths in G from u to v. (This is established in the UGP). We now show it has one path from u to v. If the $(u, v) \in E$, this is the length 1 path. Otherwise, since G + (u, v) forms a cycle and G had no cycles, this cycle must contain the edge (u, v). Deleting (u, v) from this cycle leads to a path from u to v. More precisely, given the cycle containing (u, v), I could write it as a closed walk where the starting and ending vertex is u. Either the *second* or the *penultimate* vertex must be v. Deleting (u, v) would give a walk from v to u or from u to v. In either case, we would have a path from u to v.

 $(c) \Rightarrow (d).$ UGP

 $(\underline{d}) \Rightarrow (\underline{e})$. We prove this by induction. Let P(n) be true if "for all graphs G = (V, E) with |V| = n which are (a) connected, and (b) deleting any edge e from G disconnects G and leads to exactly two connected components, must have |E| = |V| - 1."

Base Case: Is P(1) true? There is only graph with 1 vertex. It has |E| = 0 = 1 - 1. Thus, P(1) is vacuously true.

Inductive Case: Fix a natural number k and assume $P(1), P(2), \ldots, P(k)$ is true. We wish to prove P(k+1) is true. To this end, we fix a graph G = (V, E) with |V| = k+1 which satisfies the condition (d). Fix any edge $(u, v) \in G$. (d) implies that G - (u, v) has two connected components V_1 and V_2 . Consider the two induced subgraphs of G, namely, $G_1 = G[V_1]$ and $G_2 = G[V_2]$. Note that for both these graphs (a) they are connected, and (b) deleting any edge disconnects the graph into two connected components. Furthermore, $|V_1|$ and $|V_2|$ are both $\leq k$. Thus, by strong induction, $|E(G_1)| = |V_1| - 1$ and $|E(G_2)| = |V_2| - 1$. Thus, $|E(G)| = |E(G_1)| + |E(G_2)| + 1 = |V_1| + |V_2| - 1 = |V| - 1$.

 $(e) \Rightarrow (f)$: Before we prove this, we make an important observation. Since $\sum_{v \in V} \deg(v) = 2|E|$ and since |E| = |V| - 1, we get that there exist some $v \in V$ with $\deg(v) < 2$. If every $\deg(v) \ge 2$, then the LHS is $\ge 2|V|$. Furthermore, since *G* is connected, there can't be any isolated vertices. Thus, $\deg(v) \ge 1$ for all *v*. Together, we can conclude *there must exist a vertex in G with* $\deg(v) = 1$. *This is called a leaf of the tree.*

We now prove G = (V, E) has no cycles by induction. I am going to sketch the proof; I expect by now you to be comfortable enough to write the whole formal proof using predicates and all.

Since G = (V, E) has a leaf, let's call it v. Consider G' = G - v. Note, |E(G')| = |E(G)| - 1 = |V(G)| - 2 = |V(G')| - 1. Furthermore, G' is connected. For any $x, y \in V(G')$, there was a path from x to y in G. This path couldn't have contained v since $\deg_G(v) = 1$. Thus, this path also exists in G', implying G' is connected. Thus, by induction, G' doesn't have any cycles. This means G doesn't have any cycles since $\deg_G(v) = 1$ implies v can't introduce new cycles.

Theorem 5. Let G = (V, E) be a forest with k connected components. Then |E(G)| = |V(G)| - k.

Proof. Let V_1, \ldots, V_k be the connected components of G = (V, E). We know that each $G_i := G[V_i]$ is a tree. Thus, $|E(G_i)| = |V(G_i)| - 1$. Thus, $|E(G)| = \sum_{i=1}^k |E(G_i)| = \left(\sum_{i=1}^k |V(G_i)|\right) - k = |V(G)| - k$.