
CS 30: Discrete Math in CS (Winter 2019): Lecture 29
Date: 4th March, 2019 (Monday)

Topic: Graphs: Proof of Hall’s Theorem
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.

Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

1. Recap.

A graph G = (V,E) is bipartite if there is partition of V = L∪R such that L∩R = ∅ and for
every edge e = (u, v) ∈ R, we have |{u, v} ∩ L| = |{u, v} ∩ R| = 1. That is, every edge has
exactly one endpoint in L and exactly one endpoint in R.

A matching M in a graph is a subset of edges M ⊆ E such that for any e, e′ ∈M , e ∩ e′ = ∅.
That is, M is a collection of edges which do not share end points. A vertex v ∈ V participates
in the matching M if there is an edge in M which is incident to v. In a bipartite graph
G = (L ∪R,E), a matching M ⊆ E is an L-matching if all vertices in L participate in M .

Given any subset S ⊆ L, we NG(S) are the set of vertices in R which neighbors of some
vertex in S. Hall’s Theorem says the following.

Theorem 1. Let G = (V,E) be a bipartite graph with V = L ∪ R. Then, G has an
L-matching if and only if

For every subset S ⊆ L, |NG(S)| ≥ |S| (Hall’s Condition)

Proof. Again, one direction is easy. That is, if G = (L ∪ R,E) has an L-matching, then we
must have (Hall’s Condition). Why? Suppose there exists an L-matching called M . Then
for any S ⊆ L, consider the set T = {v ∈ R : ∃u ∈ S : (u, v) ∈ M}. That is, look at all the
partners in M , of vertices in S. Clearly, T ⊆ NG(S), and thus, |NG(S)| ≥ |T |. And |T | = |S|
since every vertex in S has a partner in M (M is an L-matching). So, |NG(S)| ≥ |S|.
The interesting direction is the converse. Given that (Hall’s Condition) holds, we need to
prove that G = (L ∪ R,E) has an L-matching. The proof is by induction on the number of
vertices, but it has layers. So hold tight.

Let P (n) be the predicate which is true if any bipartite graphs G = (L∪R,E) with
|L| = n satisfying (Hall’s Condition) has an L-matching.

We need to show ∀n ∈ N : P (n) is true; we proceed to prove this by induction.

Base Case: Is P (1) true? Fix any graph G = (L ∪ R,E) with |L| = 1. Let L = {v}.
(Hall’s Condition) implies, degG(v) ≥ 1. So, there is some edge (v, w) incident on v. M =
{(v, w)} is an L-matching. So, P (1) is true.

Inductive Case: Fix a natural number k. We assume P (1), P (2), . . . , P (k) are all true. We
wish to prove P (k + 1). To that end, we fix a bipartite graph G = (L ∪ R,E) which satisfies
(Hall’s Condition) and |L| = k + 1.
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Let u ∈ L be an arbitrary vertex. (Hall’s Condition) implies deg(u) ≥ 1, thus there is at least
one edge (u, v) ∈ E. Pick one such edge arbitrarily. Consider the graph G′ = G − {u, v}.
That is, we delete u and then we delete v. G′ is also a bipartite graph, with G = (L′ ∪R′, E′)
where L′ = L− u, R′ = R− v and E′ = E \ (NG(u) ∪NG(v)).

We now fork into two cases.

Case 1: G′ satisfies (Hall’s Condition). This is the easy case. Since |L′| = |L| − 1 = k, and
since by the induction hypothesis, P (k) is true, we get that G′ has an L′-matching; let’s call it
M ′. Then, M := M ′ ∪ (u, v) is the required L-matching in G. So in this case, we have proven
P (k + 1).

Case 2: G′ doesn’t satisfy (Hall’s Condition). What does this mean? It means there is some sub-
set S ⊆ L′, such that |NG′(S)| < |S|. On the other hand, since G did satisfy (Hall’s Condition),
we have |NG(S)| ≥ |S|. Finally, note that the only way NG′(S) and NG(S) can be different is
that if NG(S) has the vertex v in it. And in that case, NG′(S) = NG(S) \ v.

Therefore, we have v ∈ NG(S) and furthermore, |NG(S)| = |S|; if |NG(S)| > |S|, then
indeed, |NG(S)| ≥ |S| + 1 because the LHS is an integer, which in turn implies |NG′(S)| =
|NG(S)| − 1 ≥ |S|.
Now, we consider two different graphs. We consider G1 = G[S∪NG(S)] and G2 = G[(L \ S)∪
(R \NG(S))]. Recall, the notion of induced subgraphs. It is also a good idea to draw a pic-
ture here for yourself.

Claim 1. Both G1 and G2 satisfy (Hall’s Condition).

Proof. Let’s first prove for G1. Any subset T ⊆ S has NG(T ) ⊆ NG(S). Thus, NG1(T ) =
NG(T ) as well. Since G satisfied (Hall’s Condition), we get |NG1(T )| = |NG(T )| ≥ |T |. Thus,
G1 satisfies (Hall’s Condition).

Moving on to G2. Fix a subset T ⊆ L \ S. What is NG2(T )? Here is an useful observation:

NG2(T ) = NG(T ) \NG(S) = NG(S ∪ T ) \NG(S)

The first equality follows since the neighbors of T in G2 are precisely the neighbors of T
in G which are not the neighbors of S in G. The second equality is the clever part; it is
noting that even if we look at neighbors of S ∪ T in G and remove the neighbors of S, we
still get the neighbors of T in G which are not in NG(S). Why is this useful? Because,
NG(S) ⊆ NG(S ∪ T ). Thus, we know that |NG(S ∪ T ) \NG(S)| = |NG(S ∪ T )| − |NG(S)|.
Putting all together, we get

|NG2(T )| = |NG(S ∪ T )| − |NG(S)| ≥ |S ∪ T | − |S| = |T |

where the inequality follows since |NG(S ∪ T )| ≥ |S ∪ T | by (Hall’s Condition) and since
|NG(S)| = |S|, and the second equality follows since S ∩ T = ∅.

Since both G1 and G2 satisfy (Hall’s Condition), and since both |S| and |L \ S| are < |L|,
by the induction hypothesis, we get that G1 has an S-matching called M1 and G2 has an
L \ S-matching called M2. Thus, M1 ∪M2 is the L-matching in G. Done!
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