
CS 30: Discrete Math in CS (Winter 2019): Lecture 6
Date: 11th January, 2019 (Friday)

Topic: Uncountability and Undecidability
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.

Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

1 Reals are Uncountable

Although the rationals are countable, the set of reals are not. This beautiful proof was discovered
by Georg Cantor and the trick is called diagonalization.

• The Binary Point in the Binary Notation.

First let us recall the binary notation. Any real number r ∈ (0, 1] can be expressed as an
infinite string of 0s and 1s following the binary point. We are not going to prove this here,
but we recalled the procedure in class for finding binary notations for rational numbers.

For instance, 1/4 is 0.0100000 . . . and 5/8 is 0.101000 . . ., and 1/3 = 0.0101010101010101 . . .. b

Exercise: What is the binary expression for 1/7?

Furthermore, given any infinite string s of 0s and 1s, it represents the real number using the
following map.

s 7→
∞∑
n=1

s[n] · 1
2n

(1)

b

Exercise: If s is not the all 0s string, show that (1) maps s to a real number in (0, 1].

b

Exercise: Given two different infinite strings s and s′ of 0s and 1s, why are the two real
numbers represented by (1) different.

• Diagonalization.

Theorem 1. The set (0, 1] is not countable.

Proof. Suppose not, that is, suppose (0, 1] is indeed countable. Then, by the definition of
countability and the algorithm to order countable sets, we can order all the elements of (0, 1]
as (r1, r2, r3, . . .). More precisely,

For any s ∈ (0, 1], there exists some natural number k such that s = rk. (2)

1



We now construct a table T : N× N where the nth row consists of the binary representation
of the real rn (with perhaps an infinite padding of 0’s.). This table is key to the proof. So it is
instructive to pick 6 or 7 real numbers and actually writing out the first 6 or 7 rows.

Consider the diagonal of this table. Note that for any k ∈ N, the bit in position T [k, k] is the
kth bit after the “binary point” in the binary representation of the number rk.

Now construct an infinite 0, 1 string s∗ as follows: for every k ∈ N, define s∗[k] := 1− T [k, k].
Abusing notation, let s∗ also be the real number1 in (0, 1] given by the map (1). Here is the
key fact we will use which follows from the construction of s∗:

For any k ∈ N, s∗[k] 6= T [k, k] (3)

And in particular, for any k ∈ N, the kth bit after the binary point in the binary representation
of s∗ is not T [k, k].

But s∗ ∈ (0, 1]; so (2) implies there must exist some k ∈ N such that rk = s∗, and in particular,
s∗[k] = T [k, k]. But this is a contradiction!

Therefore our supposition that the set (0, 1] is countable must be wrong. This establishes the
theorem.

2 Repercussions for Computing

• Uncomputable Problems.

The notion of countable and uncountable sets have deep repercussions in computing. To
this end, let is define what a Boolean function over natural numbers is.

Definition 1. A function f : N→ {0, 1} is called a Boolean function. Such a function decides
a YES/NO property about every natural numbers. For instance the ISODD function takes
value 1 on the odd numbers and 0 otherwise.

Let us denote the collection of all Boolean functions as F . In your problem set you prove the
following theorem.

Theorem 2. The set F is not countable.

Let us denote the set of all Python programs which take input a natural number and outputs
0 or 1 as P . In your problem set you prove that the set P is countable (in fact, the set of all
Python programs, and indeed the set of all strings is countable).

Theorem 3. The set P is countable.

We say a function f ∈ F is computable if there is some python code P ∈ P which has the
same I/O behavior as f . That is, for all n ∈ N, f(n) = P (n). Using the above two theorems,
we can conclude the following.

1Do you see why this string is not the all 0s string? The reason is that the number 1 is actually represented as the all
0’s string since it is 1.0000000 . . .. Since 1 appears as some rn, we get T [n, n] = 0 implying s[n] = 1.

2



Theorem 4. There must exist a Boolean function f : N → {0, 1} which is not com-
putable.

Proof. For sake of contradiction, suppose that all functions f ∈ F are computable. Thus, for
every f ∈ F , we can map it to some P ∈ P . Note this mapping is injective; we cannot have
two different f and g computable by the same python code P . Why? Well if so, then since f
and g are different, there is some n such that f(n) 6= g(n); but the code P returns the same
answer on n.

Thus, the map f 7→ P is an injective map. Let’s call this map φ : F → P .

Now, P is countable (Theorem 3). Therefore, there is an injection ψ : P → N.

Now consider the following function h : F → N defined as h(f) := ψ(φ(f)). That is, we use
φ to see which python program this function f maps to, and then use ψ to map it to a natural
number. This is a composition operation. b

Exercise: Prove that h : F → N is injective.

Since h : F → N is injective, we would conclude that F is countable as well. But this
contradicts Theorem 2. Hence our supposition is wrong. That is, there must exist some
function f ∈ F which is uncomputable.

• The Halting Problem.

We now describe a concrete decision problem for which there cannot exist any algorithm
/procedure /Python code. This theorem is due to Alan Turing. The problem is called the
Halting Problem.

Input: The input to the problem is two strings A and I . The first string is going to be inter-
preted as an algorithm (or a piece of Python code, if you will). The second string is going to
be interpreted as an input (or data, if you will) to this algorithm.

Output: The problem is to determine whether A(I) halts in a finite amount of time.

Remark: Note that A and I could be garbage strings. That is, A is perhaps not a valid Python
program. In which case A(I) halts (it gives an error; but it halts). Or I may not be in the correct
format (the code expected integers and you gave it a float). But these cases are “easy” for the
Halting Problem: it can perhaps figure out easily that A(I) halts.

Theorem 5. There is no finite time procedure which for every input A and I decides
correctly whether or not A(I) halts.

Proof. Suppose, for the sake of contradiction, that there indeed existed a finite time proce-
dure H(·, ·) which could take two strings A and I , and correctly figure out whether A(I)
halts or not.

Consider the following algorithm A which takes input a string B and acts as follows:

3



L1. First the algorithm run the subroutine H(B,B). That is, it asks the procedure H(·, ·)
whether the string B, when interpreted as a Python program, would halt when run on
the same stringB interpreted as data. By our supposition, in finite time,H(B,B) would
return YES or NO.

L2. If H(B,B) returns YES: we run an infinite while loop.

L3. If H(B,B) returns NO: we return 1 and halt.

The above algorithm A is also a string; in particular it contains 3 lines as described above.
To be very precise, if we fix Python as our language of choice, then A is the correct Python
implementation of the above procedure where H(·, ·) has also been implemented in Python.
For our contradiction, we ask ourselves what happens when (A,A) is passed to the proce-
dure H .

Case 1: H(A,A) return YES. That is, the procedure H looks at the string A and decides that
A(A) halts. But now consider the run ofA(A) by looking at the code. In Line 1, the code runs
H(A,A). Since we have assumed in this case that H(A,A) is YES, the algorithm branches to
Line 2. However in Line 2, the run goes into an infinite loop. That is, A(A) never halts. In this
case, we have reached a contradiction.

Case 2: Perhaps, H(A,A) returns NO. That is, the procedure H looks at the string A and
decides that A(A) never halts. But now consider the run of A(A) by looking at the code. In
Line 1, the code runs H(A,A). Since we have assumed in this case that H(A,A) is NO, the
algorithm branches to Line 3. However in Line 3, the run returns 1 and halts. That is, A(A)
halts. Again, we have reached a contradiction.

Therefore, in all possible scenarios (there are only two: YES or NO), we have reached a
contradiction. We are forced to conclude that our supposition must be wrong. That is, there
cannot be a finite time procedure H(·, ·) which for every A and I passed to it can decide
whether A(I) halts or goes into infinite loop.

Remark: The above proof is really the same diagonalization trick that we saw for the uncount-
ability of reals. To see this, note that the set of strings is countable. Suppose the strings are
named (S1, S2, S3, . . .). Think of constructing the table T [N×N] where T [Si, Sj ] contains YES
if H(Si, Sj) returns YES, and contains NO otherwise.

Now consider the diagonal of this table. This contains the answers to what H(Si, Si) returns for
all natural numbers i. Now construct the algorithm which takes input B, sees what H(B,B) is,
and does the opposite (that is halts if H(B,B) doesn’t and vice-versa). Just like we did for the
case of reals. This is a finite algorithm and can be encoded as a string (a python code). Since it is
a string, it is some Sk for some number k in the ordering.

The contradiction is obtained by looking at H(Sk, Sk). If this YES, then Sk should halt on Sk,
but Sk does the opposite. Same for vice-versa.

4



Remark: As can be imagined, many problems in automated verification is indeed undecid-
able. That is, no code can exist for checking correctness of some codes. Of course, that doesn’t
mean computer verification folks packed their bags and left. The above theorem just means there
is no procedure which works for everything. It doesn’t mean there is no verifier which works
99.9999999% of the time.

Remark: Although the Halting Problem was the “first” undecidable problem, there are other
decision problems which are also undecidable. Another one, quite different from the Halting
Problem is this one:

Given a polynomial equation on integer coefficients and a finite number of un-
knowns, is there a solution which takes integer values?

For instance, if the polynomial is 5x + 9y = 3, then indeed there are many solutions one being
x = −3, y = 2. Or suppose the polynomial is 3x2 − 5xy + y3 = 5, then it does have a solution
x = 3, y = 2. On the other hand, a polynomial equation like x2 + y2 = 3 doesn’t have any
integer solutions.

The question is then to decide whether there is a finite algorithm which takes as input such a
polynomial equation and says YES if there is an integer solution, and says NO otherwise. This
problem is called Hilbert’s 10th problem, and was proved to be undecidable in 1970.

5


	Reals are Uncountable
	Repercussions for Computing

