
CS 30: Discrete Math in CS (Winter 2019): Lecture 7
Date: 14th January, 2019 (Monday)

Topic: Modular Arithmetic and Modular Exponentiation
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.

Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

1 Definition and Basic Operations

1. Definition. Given any integer n > 0 and another integer a (not necessarily positive), we
know (by Problem 3, PSet 1) that there are unique integers q, r such that a = qn + r with
0 ≤ r < n. The number r is denoted as a mod n.

2. Examples. For example, 17 mod 3 is 2. This is because 17 = 3×5+2. Similarly, 13 mod 5 = 3.

Slightly more interestingly, −1 mod 3 = 2. This is because −1 = 3 × (−1) + 2. Similarly,
−7 mod 5 = 3 since −7 = 5× (−2) + 3. b

Exercise: What is 30 mod 7? What is −30 mod 7?

3. Notation. Given two integers a, b, we will often use the notation

a ≡n b

to denote the condition that a mod n = b mod n.

4. Operations. The following operations hold for any two integers a, b.

(a) (a+ b) mod n = ((a mod n) + (b mod n)) mod n

(b) (a · b) mod n = ((a mod n) · (b mod n)) mod n

(c) ab mod n = (a mod n)b mod n if b > 0.

Let us first see these with some examples, and then we will see the simple proofs.

• Examples

– For the addition instance, consider (17 + 13) mod 7. On the left hand side, the
answer is 30 mod 7 = 2.
On the right hand side, 17 mod 7 = 3 and 13 mod 7 = 6. Thus, 17 mod 7 + 13 mod
7 = 9, and therefore, (17 mod 7 + 13 mod 7) mod 7 = 9 mod 7 = 2.

– For the multiplication instance, consider (7 × 8) mod 5. On the left hand side, the
answer is 56 mod 5 = 1.
On the right hand side, we see 7 mod 5 = 2 and 8 mod 5 = 3. Thus, (7 mod 5) ·
(8 mod 5) = 6, and thus, ((7 mod 5) · (8 mod 5)) mod 5 = 6 mod 5 = 1.

– For the powering instance, let’s look at three examples.
∗ Consider 63 mod 5. On the left hand side, it is 216 mod 5 = 1. On the right

hand side, we see (6 mod 5)3 = 1 and thus (1 mod 5) = 1 as well.
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∗ Let’s also look at 73 mod 5. On the left hand side (flex your cubing muscles!),
we see it is 343 mod 5 = 3. On the right hand side, we see (7 mod 5)3 = 23 = 8.
And thus, 8 mod 5 = 3.
∗ Finally, let us consider another interesting example with the powering formula.

Consider 63 mod 7. On the one hand it is 216 mod 7 = 6.
Using the above formula, we see this would be (6 mod 7)3 mod 7. Now, 6 mod
7 is 6 which is also −1 mod 7. Thus, (6 mod 7)3 mod 7 is the same as (−1 mod
7)3 mod 7. Which is (−1)3 mod 7 which is the same as −1 mod 7 which is 6.
This is going to be very useful to remember.

• Proofs
– (a+ b) mod n = ((a mod n) + (b mod n)) mod n

Proof. Let a mod n be r1 and b mod n be r2. That is, there exist numbers q1, q2 such
that a = q1n + r1 and b = q2n + r2, and both r1, r2 < n. Furthermore, let q3, r3 be
such that (r1 + r2) = q3n + r3. Note that q3 could be 0 or q3 could be 1 (could it
be any larger?) That is, r3 = ((a mod n) + (b mod n)) mod n, that is, the RHS of the
above expression.
Now, (a+ b) = (q1+ q2+ q3)n+ r3 and thus (a+ b) mod n = r3. Hence proved.

– (a · b) mod n = ((a mod n) · (b mod n)) mod n

Proof. As before, let a mod n be r1 and b mod n be r2. That is, there exist numbers
q1, q2 such that a = q1n+ r1 and b = q2n+ r2, and both r1, r2 < n. Furthermore, let
q3, r3 be such that r1r2 = q3n+ r3, that is, r3 = (r1r2) mod n, that is, the RHS of the
above expression. Now,

ab = (q1n+ r1) · (q2n+ r2) = (q1q2n+ q1r2 + q2r1 + q3)n+ r3

implying, ab mod n = r3. Hence proved.
– ab mod n = (a mod n)b mod n if b > 0.

Proof. For example, a2 mod n = (a · a) mod n = ((a mod n) · (a mod n)) mod n =
(a mod n)2 mod n. a3 mod n = (a · a2) mod n =

(
(a mod n) · (a2 mod n)

)
mod n =

(a mod n) · (a mod n)2 mod n = (a mod n)3 mod n

5. Ring of Integers. Note that for any integer a (not necessarily positive), the number a mod n
is in the set {0, 1, 2, . . . , n− 1}. This set is often denoted as Zn.

For a and b in Zn we may use the symbol +n to denote the operation a+n b := (a+ b) mod n.
Similarly, the symbol ×n is used to denote the operation a ×n b := (a · b) mod n. The above
facts about the operations imply for any two numbers in Zn, a+n b lies in Zn and a×n b lies
in Zn. Furthermore, there are two special numbers. There is one additive identity, named 0,
with the property that a +n 0 = a. There is one multiplicative identity, named 1, with the
property that a×n 1 = a.

Such sets along with these two operations have a name: they are called rings.

2 Modular Exponentiation Algorithm

Suppose we want to figure out what is the remainder when we divide 310 by 7, that is, what is
310(mod7)? The hard and often infeasible way would be to compute 310 and then divide by 7 to
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get the remainder. The above operations allow a much faster way to compute this. Let’s first do
an example and then give the whole algorithm.

310 mod 7 = (32)5 mod 7

= 95 mod 7

= (9 mod 7)5 mod 7 Operation (c) above

= 25 mod 7 Progress! From 310 we have moved to 25.

= (2 · 24) mod 7 Can’t halve 5 as it is odd.

=
(
(2 mod 7) · (24 mod 7)

)
mod 7 We have again halved the exponent by moving to 22 = 4.

= (2 · (42 mod 7)) mod 7

= 4

We get 4 when we divide 310 by 7.
The general idea was to keep on reducing the exponent by half by moving to the square,

and then replacing the square to a possibly smaller number by taking the mod “inside”. The full
recursive algorithm is shown below.

1: procedure MODEXP(a, b, n) . Assumes b, n are positive integers.
2: . Returns ab mod n.
3: a← a mod n . We first move a to a mod n.
4: if b = 1 then:
5: return a mod n.
6: if b is even then:
7: return MODEXP(a2 mod n, b

2 , n)
8: else
9: s = MODEXP (a2 mod n, b−1

2 , n)
10: return (a · s) mod n.

Remark: The first line ensures a ∈ {0, 1, . . . , n − 1}. Note that we compute the mods “brute-force”
for a2 mod n and (a · s) mod n. Both these, that is a2 and a · s, are at most n2. Thus, to compute
ab mod n one only needs to be “divide” numbers as big as n2 by n.

b

Exercise: Evaluate by hand showing all calculations

1. 750(mod 15).

2. 2411(mod 35).

b

Exercise: Implement the algorithm up in your favorite language.
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