CS 30: Discrete Math in CS (Winter 2019): Lecture 7

Date: 14th January, 2019 (Monday) Topic: Modular Arithmetic and Modular Exponentiation Disclaimer: These notes have not gone through scrutiny and in all probability contain errors. Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

1 Definition and Basic Operations

- 1. **Definition.** Given any integer n > 0 and another integer a (not necessarily positive), we know (by Problem 3, PSet 1) that there are unique integers q, r such that a = qn + r with $0 \le r < n$. The number r is denoted as $a \mod n$.
- 2. Examples. For example, 17 mod 3 is 2. This is because $17 = 3 \times 5 + 2$. Similarly, 13 mod 5 = 3. Slightly more interestingly, $-1 \mod 3 = 2$. This is because $-1 = 3 \times (-1) + 2$. Similarly, $-7 \mod 5 = 3$ since $-7 = 5 \times (-2) + 3$.

L

Exercise: What is 30 mod 7? What is -30 mod 7?

3. Notation. Given two integers *a*, *b*, we will often use the notation

$$a \equiv_n b$$

to denote the condition that $a \mod n = b \mod n$.

- 4. **Operations.** The following operations hold for any two integers *a*, *b*.
 - (a) $(a+b) \mod n = ((a \mod n) + (b \mod n)) \mod n$
 - (b) $(a \cdot b) \mod n = ((a \mod n) \cdot (b \mod n)) \mod n$
 - (c) $a^b \mod n = (a \mod n)^b \mod n$ if b > 0.

Let us first see these with some examples, and then we will see the simple proofs.

- Examples
 - For the addition instance, consider $(17 + 13) \mod 7$. On the left hand side, the answer is $30 \mod 7 = 2$.

On the right hand side, $17 \mod 7 = 3$ and $13 \mod 7 = 6$. Thus, $17 \mod 7 + 13 \mod 7 = 9$, and therefore, $(17 \mod 7 + 13 \mod 7) \mod 7 = 9 \mod 7 = 2$.

- For the multiplication instance, consider $(7 \times 8) \mod 5$. On the left hand side, the answer is 56 mod 5 = 1.
 - On the right hand side, we see $7 \mod 5 = 2$ and $8 \mod 5 = 3$. Thus, $(7 \mod 5) \cdot (8 \mod 5) = 6$, and thus, $((7 \mod 5) \cdot (8 \mod 5)) \mod 5 = 6 \mod 5 = 1$.
- For the powering instance, let's look at three examples.
 - * Consider $6^3 \mod 5$. On the left hand side, it is $216 \mod 5 = 1$. On the right hand side, we see $(6 \mod 5)^3 = 1$ and thus $(1 \mod 5) = 1$ as well.

- * Let's also look at $7^3 \mod 5$. On the left hand side (flex your cubing muscles!), we see it is $343 \mod 5 = 3$. On the right hand side, we see $(7 \mod 5)^3 = 2^3 = 8$. And thus, $8 \mod 5 = 3$.
- * Finally, let us consider another interesting example with the powering formula. Consider 6³ mod 7. On the one hand it is 216 mod 7 = 6. Using the above formula, we see this would be (6 mod 7)³ mod 7. Now, 6 mod 7 is 6 which is also -1 mod 7. Thus, (6 mod 7)³ mod 7 is the same as (-1 mod 7)³ mod 7. Which is (-1)³ mod 7 which is the same as -1 mod 7 which is 6. This is going to be very useful to remember.
- Proofs
 - $(a+b) \mod n = ((a \mod n) + (b \mod n)) \mod n$
 - *Proof.* Let $a \mod n$ be r_1 and $b \mod n$ be r_2 . That is, there exist numbers q_1, q_2 such that $a = q_1n + r_1$ and $b = q_2n + r_2$, and both $r_1, r_2 < n$. Furthermore, let q_3, r_3 be such that $(r_1 + r_2) = q_3n + r_3$. Note that q_3 could be 0 or q_3 could be 1 (could it be any larger?) That is, $r_3 = ((a \mod n) + (b \mod n)) \mod n$, that is, the RHS of the above expression.

Now, $(a + b) = (q_1 + q_2 + q_3)n + r_3$ and thus $(a + b) \mod n = r_3$. Hence proved. \Box - $(a \cdot b) \mod n = ((a \mod n) \cdot (b \mod n)) \mod n$

Proof. As before, let $a \mod n$ be r_1 and $b \mod n$ be r_2 . That is, there exist numbers q_1, q_2 such that $a = q_1n + r_1$ and $b = q_2n + r_2$, and both $r_1, r_2 < n$. Furthermore, let q_3, r_3 be such that $r_1r_2 = q_3n + r_3$, that is, $r_3 = (r_1r_2) \mod n$, that is, the RHS of the above expression. Now,

$$ab = (q_1n + r_1) \cdot (q_2n + r_2) = (q_1q_2n + q_1r_2 + q_2r_1 + q_3)n + r_3$$

implying, $ab \mod n = r_3$. Hence proved.

- $a^b \mod n = (a \mod n)^b \mod n \text{ if } b > 0.$
 - *Proof.* For example, $a^2 \mod n = (a \cdot a) \mod n = ((a \mod n) \cdot (a \mod n)) \mod n = (a \mod n)^2 \mod n$. $a^3 \mod n = (a \cdot a^2) \mod n = ((a \mod n) \cdot (a^2 \mod n)) \mod n = (a \mod n) \cdot (a \mod n)^2 \mod n = (a \mod n)^3 \mod n$
- 5. **Ring of Integers.** Note that for any integer *a* (not necessarily positive), the number $a \mod n$ is in the set $\{0, 1, 2, ..., n-1\}$. This set is often denoted as \mathbb{Z}_n .

For *a* and *b* in \mathbb{Z}_n we may use the symbol $+_n$ to denote the operation $a +_n b := (a+b) \mod n$. Similarly, the symbol \times_n is used to denote the operation $a \times_n b := (a \cdot b) \mod n$. The above facts about the operations imply for any two numbers in \mathbb{Z}_n , $a +_n b$ lies in \mathbb{Z}_n and $a \times_n b$ lies in \mathbb{Z}_n . Furthermore, there are two *special* numbers. There is one additive identity, named 0, with the property that $a +_n 0 = a$. There is one multiplicative identity, named 1, with the property that $a \times_n 1 = a$.

Such sets along with these two operations have a name: they are called *rings*.

2 Modular Exponentiation Algorithm

Suppose we want to figure out what is the remainder when we divide 3^{10} by 7, that is, what is $3^{10} \pmod{7}$? The hard and often infeasible way would be to compute 3^{10} and then divide by 7 to

get the remainder. The above operations allow a much faster way to compute this. Let's first do an example and then give the whole algorithm.

$$3^{10} \mod 7 = (3^2)^5 \mod 7$$

= 9⁵ mod 7
= (9 mod 7)⁵ mod 7
= 2⁵ mod 7
= (2 \cdot 2^4) mod 7
= ((2 mod 7) \cdot (2^4 mod 7)) mod 7
= (2 \cdot (4^2 mod 7)) mod 7
= 4

We get 4 when we divide 3^{10} by 7.

The general idea was to keep on reducing the exponent by half by moving to the square, and then replacing the square to a possibly smaller number by taking the mod "inside". The full recursive algorithm is shown below.

1: **procedure** MODEXP $(a, b, n) \triangleright$ Assumes b, n are positive integers. \triangleright Returns $a^b \mod n$. 2: $a \leftarrow a \mod n \triangleright$ We first move $a \text{ to } a \mod n$. 3: if b = 1 then: 4: return $a \mod n$. 5: if *b* is even then: 6: return MODEXP $(a^2 \mod n, \frac{b}{2}, n)$ 7: else 8: $s = \text{MODEXP} (a^2 \mod n, \frac{b-1}{2}, n)$ 9: return $(a \cdot s) \mod n$. 10:

Remark: The first line ensures $a \in \{0, 1, ..., n-1\}$. Note that we compute the mods "brute-force" for $a^2 \mod n$ and $(a \cdot s) \mod n$. Both these, that is a^2 and $a \cdot s$, are at most n^2 . Thus, to compute $a^b \mod n$ one only needs to be "divide" numbers as big as n^2 by n.

Exercise: Evaluate by hand showing all calculations

- 1. $7^{50} \pmod{15}$.
- 2. $24^{11} \pmod{35}$.

Exercise: Implement the algorithm up in your favorite language.

Þ

Þ