CS 30: Discrete Math in CS (Winter 2019): Lecture 7
Date: 14th January, 2019 (Monday)
Topic: Modular Arithmetic and Modular Exponentiation
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.
Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

1 Definition and Basic Operations

1. Definition. Given any integer n > 0 and another integer a (not necessarily positive), we
know (by Problem 3, PSet 1) that there are unique integers ¢, r such that a = gn + r with
0 <r < n. The number 7 is denoted as a mod n.

2. Examples. For example, 17 mod 3 is 2. This is because 17 = 3 x 54-2. Similarly, 13 mod 5 = 3.

Slightly more interestingly, —1 mod 3 = 2. This is because —1 = 3 x (—1) + 2. Similarly,
—7mod 5 = 3since -7 =5 x (—2) + 3. #

Exercise: What is 30 mod 7? What is —30 mod 77?

3. Notation. Given two integers a, b, we will often use the notation
a=,b
to denote the condition that @ mod n = b mod n.
4. Operations. The following operations hold for any two integers a, b.

(@) (a+b) modn = ((amod n)+ (bmod n)) mod n
(b) (a-b) mod n = ((amod n)-(bmod n)) mod n

(©) a®mod n = (a mod n)’ mod nifb > 0.

Let us first see these with some examples, and then we will see the simple proofs.

e Examples

- For the addition instance, consider (17 4+ 13) mod 7. On the left hand side, the
answer is 30 mod 7 = 2.
On the right hand side, 17 mod 7 = 3 and 13 mod 7 = 6. Thus, 17 mod 7 + 13 mod
7 =9, and therefore, (17 mod 7 4+ 13 mod 7) mod 7 = 9 mod 7 = 2.

— For the multiplication instance, consider (7 x 8) mod 5. On the left hand side, the
answer is 56 mod 5 = 1.
On the right hand side, we see 7mod 5 = 2 and 8 mod 5 = 3. Thus, (7 mod 5) -
(8 mod 5) = 6, and thus, ((7 mod 5) - (8§ mod 5)) mod 5 = 6 mod 5 = 1.

- For the powering instance, let’s look at three examples.

% Consider 6% mod 5. On the left hand side, it is 216 mod 5 = 1. On the right
hand side, we see (6 mod 5)® = 1 and thus (1 mod 5) = 1 as well.



* Let’s also look at 72 mod 5. On the left hand side (flex your cubing muscles!),
we see it is 343 mod 5 = 3. On the right hand side, we see (7 mod 5)3 = 23 = 8.
And thus, 8 mod 5 = 3.
* Finally, let us consider another interesting example with the powering formula.
Consider 62 mod 7. On the one hand it is 216 mod 7 = 6.
Using the above formula, we see this would be (6 mod 7)3 mod 7. Now, 6 mod
7 is 6 which is also —1 mod 7. Thus, (6 mod 7)3 mod 7 is the same as (—1 mod
7)3 mod 7. Which is (—1)3 mod 7 which is the same as —1 mod 7 which is 6.
This is going to be very useful to remember.
e Proofs
- (a+b) mod n = ((amod n)+ (bmod n)) mod n

Proof. Let a mod n be r; and b mod n be ry. That is, there exist numbers ¢, g2 such

that a = ¢1n + r1 and b = ¢on + 19, and both r{, ry < n. Furthermore, let g3, r3 be

such that (11 + r2) = gsn + r3. Note that g3 could be 0 or g3 could be 1 (could it

be any larger?) Thatis, 73 = ((a mod n) + (b mod n)) mod n, that is, the RHS of the

above expression.

Now, (a+b) = (g1 + g2 + g3)n + r3 and thus (a + b) mod n = r3. Hence proved. [

- (a-b) mod n = ((amod n)-(bmod n)) mod n

Proof. As before, let a mod n be r; and b mod n be ry. That is, there exist numbers

q1, ¢o such that a = ¢g1n + r1 and b = gon + r9, and both r{, 9 < n. Furthermore, let

qs, 73 be such that r17y = g3n + r3, thatis, r3 = (r;r2) mod n, that is, the RHS of the

above expression. Now,

ab= (qin+r1) - (@en +12) = (q1q2n + q172 + 211 + g3)n + 13

implying, ab mod n = r3. Hence proved. O
- a®mod n = (a mod n)’ mod nif b > 0.

Proof. For example, a? mod n = (a - a) mod n = ((a mod n) - (a mod n)) mod n =

(@ mod n)? mod n. a®> mod n = (a - a?) mod n = ((a mod n) - (a* mod n)) mod n =

(a mod n) - (a mod n)? mod n = (a mod n)3 mod n O

5. Ring of Integers. Note that for any integer a (not necessarily positive), the number a mod n
isin the set {0,1,2,...,n — 1}. This set is often denoted as Z,.

For a and b in Z,, we may use the symbol +,, to denote the operation a +,, b := (a+b) mod n.
Similarly, the symbol x,, is used to denote the operation a x,, b := (a - b) mod n. The above
facts about the operations imply for any two numbers in Z,,, a +, b lies in Z,, and a x,, b lies
in Z,,. Furthermore, there are two special numbers. There is one additive identity, named 0,
with the property that a 4+, 0 = a. There is one multiplicative identity, named 1, with the
property that a x,, 1 = a.

Such sets along with these two operations have a name: they are called rings.

2 Modular Exponentiation Algorithm

Suppose we want to figure out what is the remainder when we divide 31° by 7, that is, what is
319(mod7)? The hard and often infeasible way would be to compute 3!° and then divide by 7 to
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get the remainder. The above operations allow a much faster way to compute this. Let’s first do
an example and then give the whole algorithm.

31 mod 7 = (3%)° mod 7

= 9°mod 7

= (9 mod 7)° mod 7 Operation (c) above

= 25 mod 7 Progress! From 3'° we have moved to 2°.
= (2-2Y) mod 7 Can’t halve 5 as it is odd.

= ((2mod 7) - (2* mod 7)) mod 7 We have again halved the exponent by moving to 2* = 4.
= (2- (4> mod 7)) mod 7
=4

We get 4 when we divide 31 by 7.

The general idea was to keep on reducing the exponent by half by moving to the square,
and then replacing the square to a possibly smaller number by taking the mod “inside”. The full
recursive algorithm is shown below.

1: procedure MODEXP(a, b, n) > Assumes b, n are positive integers.
2 > Returns a® mod n.
3 a < a mod n > We first move a to a mod n.
4 if b = 1 then:
5: return ¢ mod n.
6 if b is even then:
7 return MODEXP(a? mod n, %, n)
8 else
9 s = MODEXP (a? mod n, b;QI, n)
10 return (a - s) mod n.
Remark: The first line ensures a € {0,1,...,n — 1}. Note that we compute the mods “brute-force”

for a® mod n and (a - s) mod n. Both these, that is a® and a - s, are at most n?. Thus, to compute

a® mod n one only needs to be “divide” numbers as big as n* by n.

a
Exercise: Evaluate by hand showing all calculations
1. 7°°(mod 15).
2. 241 (mod 35).
al

Exercise: Implement the algorithm up in your favorite language.
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