
CS 30: Discrete Math in CS (Winter 2020): Lecture 16
Date: 6th February, 2020 (X-hour)

Topic: Probability: Random Variables, Expectation
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.

Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

1. Random Variable.

Given a random experiment with outcomes Ω, a real valued random variable X defined over
this experiment is a mapping X ∶ Ω → R. An integer valued random variable X is a mapping
from X ∶ Ω→ Z.

Examples:

• We toss a fair coin. X(heads) = 0 and X(tails) = 1. This is a {0,1}-random variable, or
a Boolean random variable. Also called a Bernoulli random variable.

• We roll a fair die. X takes the value on the face of the die.

• We roll two fair dice. X takes the value of the sum. In this case, X = Y + Z where Y,Z
are two identical random variables of the kind from the previous bullet point.

• We toss 1000 fair coins. Z takes the value of the number of heads we see.

• Given any event E , there is an associated random variable called the indicator random
variable denoted as 1E , where 1E(ω) = 1 if ω ∈ E , and 0 otherwise.

2. Events associated with random variables.

Given a random variable X , we can associate many events and ask for their probabili-
ties. For instance, we can ask Pr[X = x]. More precisely, this is a shorthand for saying
∑ω∈Ω∶X(ω)=xPr[ω].
Similarly, Pr[X ≥ k] is a shorthand for saying ∑ω∈Ω∶X(ω)≥kPr[ω].

3. “Shape” of a Random Variable.

SinceX is real valued (or integer valued), one can plot how the Pr[X = x] looks like with re-
spect to X . The following plots show a couple of examples. The first set of figures (Figure 1)
is related to dice. We roll N dice, each independent of one another, and we use X to denote
the sum of the numbers seen. The plots show how Pr[X = x] changes with x, as x goes from
0 to 6N + 1. As you can see, when N = 1, the probabilities are the same for each number, and
equals 1/6th. However, the distribution becomes less and less uniform as N grows.
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Figure 1: The above graphs plot the probability of seeing a particular sum on the Y-axis against the possible
sums on the X-axis. From left to right, the number of dice is 1,2,3 and 100.

The next set of figures (Figure 2) relate to coin tosses. We toss N coins and Z denotes the
number of heads we see. The plots in blue (the ones to the left) are the plots of tosses of fair
coins which turn up heads 50-50. The plots in green (the ones to the right) are for biased
coins which come up heads with probability 0.3.

Figure 2: The above graphs plot the probability of seeing a particular number of heads on the Y-axis against
the reals on the X-axis. The first two figures (in blue) on the left are for fair coins, withN = 100 coins tossed
and N = 1000 coins tossed. The two figures in the right (in green) are for biased coins which come heads
with 0.3 probability. The number of coins are N = 100 and N = 1000 respectively.

Remark: A few points are noteworthy

• Note the shapes become “narrower” as the number of coins/dice grow.

• Note that the shape of fair coin is similar to the shape of biased coins with just a shift.

• Note that the 100 dice shape looks quite similar to the shape with 1000 coins.

All of these happen for a very important reason (which we will not cover, unfortunately). The
reason, informally, states that if we take many, many independent copies of the same random
variable (dice, coin, whatever), and add them all up, their shape (or “distribution” more formally)
all tend to look the same (like a bell curve). This unifying shape is called the “normal distribution”
or the “Gaussian distribution”.

4. Expectation of a Random Variable.

The expectation of a random variable X is defined to be

Exp[X] = ∑
ω∈Ω

X(ω) ⋅Pr[ω]

Here is another simpler, and possibly more useful, formula to calculate expectation.
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Theorem 1. For any random variable X , we have

Exp[X] = ∑
k∈R

k ⋅Pr[X = k]

Proof.

Exp[X] = ∑
ω∈Ω

X(ω) ⋅Pr[ω] = ∑
k∈R

⎛
⎝ ∑
ω∈Ω∶X(ω)=k

X(ω) ⋅Pr[ω]
⎞
⎠

(1)

= ∑
k∈R

⎛
⎝ ∑
ω∈Ω∶X(ω)=k

k ⋅Pr[ω]
⎞
⎠

= ∑
k∈R

k ⋅
⎛
⎝ ∑
ω∈Ω∶X(ω)=k

Pr[ω]
⎞
⎠

= ∑
k∈R

k ⋅Pr[X = k]

The main idea is to partition Ω based on various valued X(ω) takes, and for each of those,
X(ω) can be pulled out of the summation.

Remark: The expectation is therefore often thought of as an inner-product (aka dot-product) of
two vectors. These vectors have ∣Ω∣ dimensions. One vector is (X(ω) ∶ ω ∈ Ω), and the other
is (Pr[ω] ∶ ω ∈ Ω). This dot-product view is often useful (although, sadly, we may not see its
ramifications in this course).

Examples: We now use the above formula to calculate expectations of a bunch of random
variables.

• We toss a fair coin. X(heads) = 0 and X(tails) = 1. This is a {0,1}-random variable, or a
Boolean random variable. Also called a Bernoulli random variable.

Exp[X] = 0 ⋅Pr[X = 0] + 1 ⋅Pr[X = 1] = 1/2

Indeed, if the coin were not fair, and the probability that tails would come with proba-
bility p, then Exp[X] = p.

• We roll a fair die. X takes the value on the face of the die.

Exp[X] = 1 ⋅ 1

6
+ 2 ⋅ 1

6
+ 3 ⋅ 1

6
+ 4 ⋅ 1

6
+ 5 ⋅ 1

6
+ 6 ⋅ 1

6
= 3.5

• We roll two fair dice. X takes the value of the sum. In this case, X = Y + Z where Y,Z are
random variables of the kind from the previous bullet point.
This is requires a little work. The range of X is {2,3,4,5,6,7,8,9,10,11,12}. We can
calculate the probabilities for each (remember, it is not uniform), and then do the calcu-
lation. b
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Exercise: Please do the calculation.

We get the answer 7. Did you?
• We toss a fair coin 100 times. Z is the number of heads.

This is a lot more work. First, we observe the range(Z) = {0,1,2, . . . ,100}. Then, we try
to figure out Pr[Z = k]. This is 1

2100
⋅ (100

k
). (Do you see how? There are 2100 possible

outcomes, each equally likely coz the coins are fair, and (100
k
) have exactly k heads.).

Therefore,

Exp[Z] =
100

∑
k=0

k ⋅ (100

k
) ⋅ 1

2100

Phew!
• Given any event E , there is an associated random variable called the indicator random vari-

able denoted as 1E , where 1E(ω) = 1 if ω ∈ E , and 0 otherwise.

Exp[1E] = 0 ⋅Pr[¬E] + 1 ⋅Pr[E] = Pr[E]
This is quite important. Why? Because it turns a probability calculation (the RHS) into
an expectation calculation. As we show below, calculating expectations is often easier
than calculating probabilities. b

Exercise: Suppose you have a fair coin. Construct the following random variable Z whose range
is N. You keep tossing the fair coin till you get a heads. Z is the number of times you have tossed
the coin. What is Exp[Z]? To do this, figure out what is Pr[Z = k]. Then write the expectation
as a sum. Then see if you can simplify the sum.

5. Multiplication by a scalar. If X is a random variable, and c is a “scalar” (a constant), then
Z = c ⋅X is another random variable. Exp[c ⋅X] = c ⋅Exp[X]. b

Exercise: Prove this.

6. Expectation of a function of a random variable. Let X be a random variable, and let f ∶
R → R be any function. One can then define a random variable Z ∶= f(X), defined as
Z(ω) = f(X(ω). The following easily follows as in the proof of Theorem 1.

Theorem 2. Exp[f(X)] = ∑k∈R f(k) ⋅Pr[X = k].

Proof.

Exp[f(X)] = Exp[Z] = ∑
ω∈Ω

Z(ω) ⋅Pr[ω] = ∑
ω∈Ω

f(X(ω)) ⋅Pr[ω]

= ∑
k∈R

⎛
⎝ ∑
ω∈Ω∶X(ω)=k

f(X(ω)) ⋅Pr[ω]
⎞
⎠

= ∑
k∈R

⎛
⎝ ∑
ω∈Ω∶X(ω)=k

f(k) ⋅Pr[ω]
⎞
⎠

= ∑
k∈R

f(k) ⋅
⎛
⎝ ∑
ω∈Ω∶X(ω)=k

Pr[ω]
⎞
⎠

= ∑
k∈R

f(k) ⋅Pr[X = k]
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Example.

• We roll a fair die. X takes the value on the face of the die.

Exp[X2] = 12 ⋅ 1

6
+ 22 ⋅ 1

6
+⋯ + 62 ⋅ 1

6
= 91

6

and
Exp [ 1

X
] = 1

1
⋅ 1

6
+ 1

2
⋅ 1

6
+⋯ + 1

6
⋅ 1

6
= 49

120 b

Exercise: Which is bigger – Exp[X2] or (Exp[X])2? Exp [ 1
X
] or 1

Exp[X]?

7. Linearity of Expectation. This is one of the most powerful equations in all of probability.
Literally. It states the following. It literally has a four line proof.

Theorem 3. For any two random variables X and Y , let Z ∶=X + Y . Then,

Exp[Z] = Exp[X] +Exp[Y ]

Proof.

Exp[Z] = ∑
ω∈Ω

Z(ω)Pr[ω] Definition of Expectation

= ∑
ω∈Ω

(X(ω) + Y (ω))Pr[ω] Definition of Z

= ∑
ω∈Ω

X(ω)Pr[ω] + ∑
ω∈Ω

Y (ω) ⋅Pr[ω] Distributivity

= Exp[X] +Exp[Y ] Definition of Expectation

As a corollary, by applying the above again and again k − 1 times, we get:

Theorem 4. For any k random variables X1,X2, . . . ,Xk,

Exp [
k

∑
i=1

Xi] =
k

∑
i=1

Exp[Xi]

Examples of applications.

(a) We roll two fair dice. X takes the value of the sum. In this case, X = Y + Z where Y,Z are
random variables of the kind from the previous bullet point.
Tailor-made application. Exp[Y ] = Exp[Z] = 3.5, the expected value of a single roll of
a die. Thus, Exp[X] = Exp[Y +Z] = 7 by linearity of expectation.
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(b) We have a biased coin which lands heads with probability p. We toss it 100 times. Let Z be the
number of heads we see. What is Exp[Z]? Note that earlier we had the question for p = 0.5.

Remark: Try doing this the “first-principle” way. That is, for each 0 ≤ k ≤ 100, figure
out the probability Pr[X = k] (that is, the probability we get exactly k heads), and then
sum ∑100

k=0 k ⋅Pr[X = k]. Please try it; feel the sweat needed to do this. It will make you
appreciate the next three lines more!

Define new random variables; define Xi to take the value 1 if the ith toss is heads, and
0 otherwise. Note, X =X1 +X2 +⋯+X100. Note, Exp[Xi] = p (it is a Bernoulli random
variable). Thus, linearity of expectation gives Exp[X] = 100p.

(c) n people checked in their hats, but on their way out, were handed back hats randomly. What is
the expected number of people who get their correct hats?
Define Xi to be 1 if the ith person gets his or her back correctly. What is Exp[Xi]? It is
1/n; it is the probability that σ(i) = i for a random ordering σ. This question was there
in the UGP. Let Z = ∑n

i=1Xi. Note, Z is the number of people who get their correct hats.
By linearity of expectation, Exp[Z] = 1.

(d) In a party of n people there are some pairs of people who are friends, and some pairs who are not.
In all there are m pairs of friends. The host randomly divides the party by taking each person
and sending them left or right at the toss of a fair coin. How many friends, in expectation, are
sundered apart?

Remark: In terms of graphs (which we will see soon) the question is: a graph with m
edges is randomly partitioned. How many edges, in expectation, have endpoints in different
parts?

For each pair of friends (u, v), define Xuv which takes the value 1 if u and v are split,
and takes the value 0 if u and v are not split. The probability u and v are split is 1/2
(either u is sent left, v is sent right, or vice-versa – do you see this?). Thus, Exp[Xuv] =
1/2. Define Z = ∑(u,v)∶ friendsXuv; Z is the number of friends sent apart. Exp[Z] =
∑(u,v)∶ friends Exp[Xuv] =m/2. In expectation, half the friendships are sundered apart.

(e) In an ordering σ of (1,2, . . . , n), an inversion is a pair i < j such that σ(i) > σ(j). How many
inversions, in expectation, are there in a random permutation?
Let σ be a random permutation. Define the indicator random variable Xij for i < j,
which takes the value 1 if σ(i) > σ(j), and 0 otherwise. Note that Pr[Xij = 1] = 1

2 ;
there are equally many orderings with σ(i) > σ(j) as σ(i) < σ(j). Now note that Z =
∑n

i=1∑j>iXij is the number of inversions in σ. Thus, Exp[Z] = ∑n
i=1∑j>nExp[Xij] =

1
2 ⋅

n(n−1)
2 .
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