
CS 30: Discrete Math in CS (Winter 2020): Lecture 17
Date: 7th February, 2020 (Friday)

Topic: Probability: Independence, Variance
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.

Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

1. Independent Random Variables. Two random variables X and Y are independent, if for
any x ∈ range(X) and any y ∈ range(Y ),

Pr[X = x,Y = y] = Pr[X = x] ⋅Pr[Y = y]

Examples:

• If we roll two dice, and X1 and X2 indicate the value of the rolls, then X1 and X2 are
independent.

• If we have two independent events A and B, then their indicator random variables 1A
and 1B are independent.

• Consider a random variable X taking value +1 if a toss of a coins is head, and −1 if its
tails. Such random variables are called Rademacher random variables. Suppose we toss
the coin twice and X1 and X2 are the corresponding random variables. Then X1 and
X2 are independent.

A set of k random variables X1, . . . ,Xk are mutually independent if for any x1, x2, . . . , xk with
xi ∈ range(Xi), we have

Pr[X1 = x1,X2 = x2, . . . ,Xk = xk] =
k

∏
i=1

Pr[Xi = xi]

Theorem 1. If X and Y are two independent random variables, then

Exp[XY ] = Exp[X] ⋅Exp[Y ]

Proof.

Exp[XY ] = ∑
x∈range(x),y∈range(y)

(xy) ⋅Pr[X = x,Y = y] Definition of Expectation

= ∑
x∈range(x),y∈range(y)

(xy) ⋅Pr[X = x] ⋅Pr[Y = y] Independence

=
⎛
⎝ ∑
x∈range(x)

x ⋅Pr[X = x]
⎞
⎠
⋅
⎛
⎝ ∑
y∈range(y)

y ⋅Pr[Y = y]
⎞
⎠

Algebra

= Exp[X] ⋅Exp[Y ] Definition of Expectation

Of course, there is no need to stick to two random variables. The theorem easily generalizes
(do you see how?) to mutually independent random variables as follows.
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Theorem 2. If X1,X2, . . . ,Xk are mutually independent random variables, then

Exp [
k

∏
i=1

Xi] =
k

∏
i=1

Exp [Xi]

Examples.

• Let Xi and Xj be two independent Rademacher random variables. Recall, Xi takes +1
with probability 1/2 and −1 with probability 1/2. Then note (a) Exp[Xi] = Exp[Xj] = 0,
(b) Exp[Xi ⋅Xi] = Exp[Xj ⋅Xj] = 1, and (c) Exp[XiXj] = Exp[Xi] ⋅Exp[Xj] = 0. This
is a very useful fact.

• Consider rolling a die n times, independently. Let Z be the random variable indicating
the product of all the numbers seen. What is Exp[Z]? To solve this, let Xi be the roll of
the ith die. We know that Exp[Xi] = 3.5 for all i. We also know X1,X2, . . . ,Xn are all
independent random variables. Thus, Exp[Z] = (3.5)n.

2. Variance and Standard Deviation.

The expectation of a random variable is some sort of an “average behavior” of a random
variable. However, the true value of a random variable may be no where close to the ex-
pectation. For instance, consider a random variable which takes the value 10000 with prob-
ability 1/2, and −10000 with probability 1/2. What is Exp[X]? Yes, it is 0. Thus, there is
significant deviation of X from its expectation.

The variance and standard deviation try to capture this deviation. In particular, the variance
of a random variable is the expected value of the square of the deviation.

Let X be a random variable. The variance of X is defined to be

Var[X] ∶= Exp [(X −Exp[X])2]

That is, if we define another random variable D ∶= (X −Exp[X])2, then Var[X] is the
expected value of this new deviation random variable D.

The standard deviation σ(X) is defined to be
√
Var(X).

Theorem 3. Var[X] = Exp[X2] − (Exp[X])2.

Proof.

Var[X] = Exp[(X −Exp[X])2] = Exp[X2 − 2XExp[X] + (Exp[X])2]

Then, we apply linearity of expectation to get

Var[X] = Exp[X2] − 2Exp[X] ⋅Exp[X] + (Exp[X])2 = Exp[X2] − (Exp[X])2

A useful corollary (something we observed in the last lecture notes):
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Theorem 4. For any random variable Exp[X2] ≥ (Exp[X])2.

Proof. Var[X] is the expected value of (X−Exp[X])2. That is, Var[X] is the expected value
of a random variable which is always non-negative. In particular, Var[X] is non-negative.
Which in turn means Exp[X2] − (Exp[X])2 ≥ 0. Rearranging implies the corollary.

Examples

• Roll of a die. Let X be the roll of a fair 6-sided die. We know that Exp[X] = 3.5. To
calculate the variance, we can use the deviation D ∶= (X − Exp[X])2 = (X − 3.5)2.
Usinhg this, we get

Var[X] = Exp[D] = 1

6
((2.5)2 + (1.5)2 + (0.5)2 + (0.5)2 + (1.5)2 + (2.5)2) = 35

12

• Toss of a biased coin. Let X be a Bernoulli random variable taking value 1 if a coin tosses
heads, and 0 otherwise. Suppose the probability of heads was p. Recall, Exp[X] = p.
Also note since X is a indicator random variable, X2 = X . Thus, Exp[X2] = p as well.
We can calculate the variance as

Var[X] = Exp[X2] − (Exp[X])2 = p − p2 = p(1 − p)

• Indicator Random Variable. Using the above toss of a biased coin example, we see that
for any event E , the variance of the indicator random variable is

Var[1E] = Pr[E] ⋅ (1 −Pr[E]) = Pr[E] ⋅Pr[¬E]

Theorem 5. If X is a random variable, and c is a “scalar” (a constant), then Z = c ⋅X is
another random variable. Var[c ⋅X] = c2 ⋅Var[X].

Proof.

Var[c ⋅X] = Exp[c2X2] − (Exp[cX])2 = c2Exp[X2] − c2 (Exp[X])2 = c⋅Var[X]

The next theorem is a linearity of variance result for independent random variables.

Theorem 6. For any two independent random variables X and Y , let Z ∶=X + Y . Then,

Var[Z] =Var[X] +Var[Y ]

Proof. By definition of variance, we get

Var[X + Y ] = Exp[(X + Y )2] − (Exp[X] +Exp[Y ])2 (1)
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Now, we expand the first term in the RHS to get

Exp[(X + Y )2] = Exp[X2 + 2XY + Y 2]
= Exp[X2] + 2Exp[XY ] +Exp[Y 2] Linearity of Expectation

= Exp[X2] + 2Exp[X]Exp[Y ] +Exp[Y 2] Since X and Y are independent.
(2)

Next, we expand the second term in the RHS of (1), to get

(Exp[X] +Exp[Y ])2 = (Exp[X])2 + 2Exp[X]Exp[Y ] + (Exp[Y ])2 (3)

Subtracting (3) from (2), we get

Var[X + Y ] = (Exp[X2] − (Exp[X])2) + (Exp[Y 2] − (Exp[Y ])2)
= Var[X] +Var[Y ] (4)

We can generalize the above proof to many random variables. In particular, we can say
that if X1,X2, . . . ,Xk are mutually independent random variables, then the variance of the
sum is the sum of the variances. However, we don’t need mutual independence. Pairwise
independence suffices. The proof is given as a solution to the UGP; perhaps you can try it.
There is nothing more than the algebra above except there are k things adding up.

Theorem 7. For any k pairwise independent (and therefore also for mutually indepen-
dent) random variables X1,X2, . . . ,Xk,

Var [
k

∑
i=1

Xi] =
k

∑
i=1

Var[Xi]

3. Deviation Inequalities

We have seen an example that Exp[X] may not be anywhere close to what values X can
take (recall the X = 10000 with 0.5 probability and −10000 with 0.5 probability). Deviation
inequalities try to put an upper bound on the probability that a random walk deviates too far
from the expectation.

The mother of all deviation inequalities is the following:

Theorem 8. (Markov’s Inequality)

Let X be a random variable whose range is non-negative reals. Then for any t > 0, we
have

Pr[X ≥ t] ≤ Exp[X]
t
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Before we embark on to the proof of Markov’s inequality, let us actually understand what it
says. For simplicity, assume the probability distribution is uniform (so the expectation is the
usual “average”). And also let’s fix t = 2. Also, just for concreteness, let X denote the height
of a random person in a group of people. Then, Markov states that the fraction of people
whose height is at least twice the average is at most 1/2. Indeed, if not, then more than 1/2 the
fraction will be more than 2 times the average, but that will just drive the average up. The
proof below is basically this argument for general probability distributions.

Proof. By definition of expectation, we have

Exp[X] = ∑
k∈R

k ⋅Pr[X = k] = ∑
0≤k<t

k ⋅Pr[X = k] +∑
k≥t

k ⋅Pr[X = k]

The first summation ∑0≤k<t k ⋅ Pr[X = k] ≥ 0 since all terms are non-negative. The second
summation is ∑k≥t k ⋅Pr[X = k] ≥ t ⋅∑k≥tPr[X = k] = t ⋅Pr[X ≥ t].
Putting it all together, we get

Exp[X] ≥ t ⋅Pr[X ≥ t]

which gives what we want by rearrangement.

Markov’s inequality only talks about non-negative random variables. Indeed, the example
in the beginning of this bullet point shows that it cannot be true for general random vari-
ables. This is where variance comes to play. The following is one of the most general forms
of deviation inequalities.

Theorem 9. (Chebyshev’s Inequality)

Let X be a random variable. Then for any t > 0, we have

Pr[∣X −Exp[X]∣ ≥ t] ≤ Var[X]
t2

Proof. We first note that

Pr[∣X −Exp[X]∣ ≥ t] = Pr[(X −Exp[X])2 ≥ t2]

Then we notice that D ∶= (X −Exp[X])2 is a non-negative random variable, and therefore
we can apply Markov’s inequality on it to get

Pr[∣X −Exp[X]∣ ≥ t] = Pr[D ≥ t2] ≤ Exp[D]
t2

= Var[X]
t2

Theorem 10. A useful corollary to the above, and one which is often used as rule of
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thumb, is obtained by setting t = cσ(X) for some c ≥ 0. One gets,

Pr[∣X −Exp[X]∣ ≥ cσ(X)] ≤ 1

c2

Proof. When t = cσ(X) is substituted in Chebyshev’s inequality, one gets the RHS in the
above corollary by reminding oneself that σ(X) =

√
Var(X).

Example

• Suppose we toss 1000 fair coins. What are the chances that we see more than 600 heads?
In this case, let Z be the random variable which evaluates to the number of heads seen
in the toss of 1000 coins. We are interested in the question

Pr[Z ≥ 600]?

To evaluate this, we define random variables X1,X2, . . . ,X1000, where Xi is the indica-
tor random variable for the ith toss; that is, it is defined to be 1 if the ith toss is heads,
and it is defined to be 0 if the ith toss is tails. We observe four crucial things:

– Z =X1 +X2 +⋯ +X1000.
– Exp[Xi] = 0.5 for all 1 ≤ i ≤ 1000. This is because the coins are fair.
– X1,X2, . . . ,X1000 are ( mutually) independent.
– Var[Xi] = 0.25 (see variance example above – with p = 0.5)

Linearity of expectation gives us

Exp[Z] =
1000

∑
i=1

Exp[Xi] = 1000 ⋅ 0.5 = 500

The fact that the Xi’s are (mutually) independent, allows us to use linearity of variance
(Theorem 7), to get

Var[Z] =
1000

∑
i=1

Var[Xi] = 1000 ⋅ 0.25 = 250

Finally, we can apply Chebyshev’s inequality as follows

Pr[Z ≥ 600] = Pr[Z − 500 ≥ 100] We have subtracted the expectation from both sides
≤ Pr[∣Z − 500∣ ≥ 100] if Z − 500 ≥ 100, surely the absolute value is.

≤ Var(Z)
1002

Chebyshev’s Inequality

= 1

40
Substituting Var[Z] = 250.

Thus, the chances we see more than 600 heads is at most 2.5%.
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Remark: The true answer to the question of what is the probability we see more than 600 heads
is in fact much, much lower. The reason is that when a random variable can be written as a sum
of mutually independent random variables, then the rule of thumb for the deviations is

The probabilityX is more than c standard deviations away is of the order of e−c
2
/2

The above statement is qualitative rather than quantitative (and therefore I use the term “order
of”). But one can see in the above coins example, the standard deviation is

√
250 ≈ 16. Thus

seeing more than 100 heads than the mean is being off by more than 6 standard deviations. The
chances of this is roughly e−6

2
/2 which is roughly 1 in 100 million! Way smaller than 2.5%.

You should use a computer to check it out.

b

Exercise: Do the following exercises mimicking the above example.

• Suppose every email I get independently is spam with probability 1%. I receive 100 emails.
What is the probability that more than 7 of them are spam?

• Suppose I roll 100 normal dice, and add the sum up. What is the probability that the total
sum is less than 100?
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