
CS 30: Discrete Math in CS (Winter 2020): Lecture 19+20
Date: 12th February, 2020 (Wednesday) + 13th February (X)

Topic: Graphs: Connectivity, Trees
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.

Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

1. Perambulations in Graphs. We introduce a lot of definitions involving alternating sequence
of vertices and edges. These are key definitions so make sure you understand them. Through-
out below we fix a graph G = (V,E).

• A walk w in G is an alternating sequence of vertices and edges

w = (v0, e1, v1, e2, v2, . . . , ek, vk)

such that the ith edge ei = (vi−1, vi) for 1 ≤ i ≤ k.
Intuitively, imagine starting at vertex v0, using the edge e1 to go to the adjacent vertex
v1, and then using e2 to go to the adjacent (to v1) vertex v2, and so on and so forth till
we reach vk.
Note both the edges and vertices could repeat themselves. That is ei could be the same
as ej for j ≠ i. In fact, ei+1 could be the same as ei; this would mean going from one
endpoint of ei to the other and immediately returning back.
The walk above is said to start at v0 and end at vk. The node v0 is often called the
source/origin and the node vk is often called the sink/destination. If there is a walk as
described above, then we often say “there is a walk from v0 to vk.”
A walk is of length k if there are k edges in the sequence. Note that since repetition of
both vertices and edges are allowed, walks could go on for ever.

• A trail t in G is a walk with no edges repeating. That is, a trail is also an alternating
sequence of vertices and edges

t = (v0, e1, v1, e2, v2, . . . , ek, vk) where the ei’s are distinct

Note that a trail could repeat vertices. For instance, if the graph was
G = ({a, b, c, d, e},{(a, b), (b, c), (c, d), (d, b), (b, e)}), then the following is a valid trail.
The vertex b is repeated.

t = (a, (a, b), b, (b, c), c, (c, d), d, (d, b), b, (b, e), e)

Also note that a trail cannot be arbitrarily long. A trail’s length is at most ∣E∣.
• A path p in a graph G is a walk with no vertices repeated. Note that a path is always

a trail. In fact, a path is a trail with no vertices repeating. Oftentimes, for describing
paths, the alternating edges are dropped. So for instance

p = (v0, v1, . . . , vk) actually stands for (v0, (v0, v1), v1, (v1, v2), v2,⋯, (vk−1, vk), vk)
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• A closed walk is a walk whose origin and destination are the same vertex. If e = (u, v)
is an edge in G, then the following is a closed walk of length 2

w = (u, e, v, e, u)

A closed walk must be of length at least 2.
Note that given a closed walk, we can choose any vi ∈ w to be the source and the des-
tination using the same vertices and edges of the closed walk. That is, given a closed
walk

w = (v0, e1, v1, e2, v2, . . . , ek, vk) with vk = v0

and an arbitrary vertex vi ∈ w with 1 ≤ i < k, we can have another closed walk

w′ = (vi, ei+1, vi+1, . . . , ek, vk = v0, e1, v1, e2, v2, . . . , ei, vi)

Note w′ is a closed walk whose source and destination are vi.

• A circuit is a closed trail of length at least 1. That is, it is a trail whose origin and
destination are the same vertex, and contains at least one edge. The latter constraint
disallows a singleton node from being defined as a circuit. Indeed, a circuit must have
at least 3 edges – do you see this?

• A cycle is a circuit with no vertex other than the source and destination repeating. Thus,
a cycle is a path followed by an edge from the destination of the path to the origin, and
then the origin node.

Theorem 1. Let G = (V,E) be a graph and u and v be two distinct vertices in V (G). If
there is a finite walk from u to v in G, then there is a path from u to v.

Proof. In the UGP, you see a way to prove the above by induction. However, for this theorem,
going via the “minimal counter example” idea is way better. Goes like this.

Let W be the set of all walks from u to v of finite length. By the premise of this theorem, we
know that this is set is non-empty. Pick a walk w ∈W from u to v of the smallest length. We
claim that this walk must be a path which would prove the theorem.

Suppose, for the sake of contradiction, w is not a path. That is,

w = (x0 ∶= u, e1, x1, . . . , xi, ei+1, xi+1, . . . , xj , ej+1, xj+1, . . . , xk−1, ek, xk ∶= v)

but two vertices, say xi and xj with i < j and both 0 ≤ i, j ≤ k, are the same. Note that the
length of the walk is k. Also note, that j cannot be i + 1 since this is true for every walk.
Therefore, since j > i, it must be j ≥ i + 2. Then, consider the walk

w′ = (x0 ∶= u, e1, x1, . . . , xi, ej+1, xj+1, . . . , ek, xk)

The length of this walk w′ is k − (j − i+ 1) ≤ k − 1. This walk w′ is a smaller length walk than
w. But this contradicts the choice of w. Thus, our supposition must be wrong. Therefore, w
is a path.
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Theorem 2. Let G = (V,E) and u be an arbitrary vertex in V (G) and e be an arbitrary
edge in E(G). If there is a circuit in G containing u, then there is a cycle in G containing
u. If there is a circuit in G containing e, then there is a cycle in G containing e.

Proof. Let me prove the first statement, and leave the second as an exercise (it can be found
in the UGP).

We are given that there is at least one circuit containing u. Among all these circuits, let C be
a circuit containing u of the smallest length (once again, there could be many, and we pick
one arbitrarily). Let

C = (u = u0, e1, u2, . . . , uk = u)

We claim that C is a cycle.

Suppose, for contradiction’s sake C is not a cycle. Then, C has a repeating vertex v. If u0 is
this repeated vertex, then there must exists 0 < j < k such that uj = u0 = v. Now note that C
can be “broken” into two circuits as follows

C1 = (u = u0, e1, u1, . . . , ej , uj = u) and C2 = (u, ej+1, uj+1, . . . , ek, uk = u)

Both of these circuits are smaller in length than C (one is of length j and the other k − j). At
least one of them contains the vertex u, and thus would lead to a smaller circuit containing
the vertex u. This is a contradiction. Therefore, u0 is not the repeated vertex.

Therefore, the repeated vertex is some ui = uj for 0 < i < j < k. That is,

C = (u = u0, e1, u1,⋯ei, ui, ei+1 . . . , ej , uj , ej+1, uj+1,⋯, ek, uk = u)

where ui = uj = v and i < j. Again, as argued in the previous theorem, j > i + 1. Now
consider,

C ′ = (u = u0, e1, u1,⋯, ei, ui, ej+1, uj+1,⋯, ek, uk = u)
This is a circuit containing u which contains k − (j − i + 1) < k edges. This contradicts the
choice of C. Therefore, C must be a cycle.

2. Connectivity in Graphs

In a graph G = (V,E), we say a vertex v is reachable from u if there is a path starting from v
and ending at u.

A graph G = (V,E) is connected if any vertex u is reachable from another vertex v. A graph
is disconnected otherwise.

Given any graph G = (V,E), we can partition it into connected components. That is, V =
V1 ∪ V2 ∪ ⋯ ∪ Vk where (a) any two vertices in the same Vi are reachable from one another,
and (b) a vertex u ∈ Vi is not reachable from any vertex v ∈ Vj if i ≠ j.

Given any graph G = (V,E) and a vertex u ∈ V , the set of vertices Su ⊆ V which are reachable
from u is the connected componenet of G which contains u.

3. Trees.

A graph G = (V,E) is a forest if it doesn’t contain any cycles.
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Theorem 3 (Low Degree Theorem).

Let G = (V,E) be a forest. There must exist a vertex v ∈ V with degG(v) ≤ 1.

Proof. Suppose, for the sake of contradiction, degG(v) ≥ 2 for all vertices v ∈ V . Therefore,
E ≠ ∅ (among other things, the handshake lemma shows this). Now, consider the longest
path p in G. Since E ≠ ∅, there is at least one path in G, and thus p is well-defined. Let

p = (x1, x2, . . . , xk−1, xk)

Now, by our supposition, degG(x1) > 1. Therefore, there exists a vertex v ≠ x2 such that
(v, x1) is an edge. Note: v cannot be xi for any 3 ≤ i ≤ k. For if that was the case, then
(x1, x2, . . . , xi−1, xi = v, x1) would be a cycle. And G has no cycle (being a forest). Therefore,
since v ≠ x1 and v ≠ x2, v ∉ p. But then (v, x1, x2, . . . , xk) is a longer path than p. This
contradicts the choice of p being the longest path.

A forest G = (V,E) is a tree if it is connected. That is, a tree G = (V,E) is a connected graph
which doesn’t contain any cycles.

Theorem 4. Let G = (V,E) be a forest. Then each connected component of G induces a
tree.

Proof. Let V1, . . . , Vk be the connected components of G. Each G[Vi] is connected by defi-
nition. If G doesn’t contain a cycle, then any subgraph also doesn’t contain a cycle. Thus,
G[Vi] contains no cycle. Thus G[Vi] is a tree.

There are many equivalent ways to think about trees. We prove some here, and some are left
as exercises in the UGP and the Pset.

Theorem 5 (Leaves of a tree). Let G = (V,E) be a tree with ∣V ∣ ≥ 2. There must exist a
vertex v ∈ V (G) with degG(v) = 1. All such degree 1 vertices are called leaves.

Proof. This is really a corollary to Theorem 3. Since G is connected and ∣V ∣ ≥ 2, every vertex
v ∈ V must have degG(v) ≥ 1. If degG(v) = 0, then v would be isolated and not connected to
any other vertex in G. Then this theorem follows from Theorem 3.

Theorem 6 (Number of edges in a tree.). Let G = (V,E) be a tree. Then ∣E∣ = ∣V ∣ − 1.

Proof. We prove this by induction (using the minimal counter example idea). Suppose the
above statement is not true. Let G be a counterexample graph with the smallest number of
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vertices. Note, ∣V (G)∣ > 2 since the only tree on 2 vertices is a single edge, and that satisfies
the statement of the theorem.

Since G is a tree, by Theorem 5, there exists a leaf vertex v ∈ V (G) with degG(v) = 1. Let (v, u)
be the unique edge in E(G). Consider the graph G′ = G − v. Note, E(G′) = E(G) − (u, v).
Thus, ∣E(G)∣ = ∣E(G′)∣ + 1. Also, ∣V (G)∣ = ∣V (G′)∣ + 1.

We now claim that G′ is a tree. Since we obtained G′ from G by deleting a vertex, and since
G had no cycles, G′ has no cycles. Is G′ connected? Pick any two vertices x, y ∈ V (G′). Since
G was connected, there is a path p = (x = x0, x1, . . . , xk = y) in G from x to y. However,
none of the internal nodes xi for 1 ≤ i ≤ k − 1 can be v; this is because internal nodes have
degG(xi) ≥ 2. Therefore, this path p still exists in G′, implying x and y are connected in G′.
Since x and y were an arbitrary pair of vertices in V (G′), we can claim that G′ is connected.

That is, G′ is connected and acyclic — G′ is a tree. Since ∣V (G′)∣ < ∣V (G)∣, and G was
the smallest counterexample tree, we get ∣E(G′)∣ = ∣V (G′)∣ − 1. But this implies ∣E(G)∣ =
∣V (G)∣ − 1. Which contradicts G was a counterexample.

Theorem 7. Let G = (V,E) be a forest with k connected components. Then ∣E(G)∣ =
∣V (G)∣ − k.

Proof. Let V1, . . . , Vk be the connected components of G = (V,E). We know that each Gi ∶=
G[Vi] is a tree. Thus, ∣E(Gi)∣ = ∣V (Gi)∣ − 1. Thus, ∣E(G)∣ = ∑k

i=1 ∣E(Gi)∣ = (∑k
i=1 ∣V (Gi)∣) − k =

∣V (G)∣ − k.

The next theorem shows that for connected graphs, the relation between the number of ver-
tices and edges is sufficient for “tree-ness”.

Theorem 8. Let G be a connected graph with ∣E(G)∣ = ∣V (G)∣ − 1. Then G is a tree.

Proof. The proof is similar to the above proof. We first assume ∣V (G)∣ ≥ 2 for otherwise, G
would be a singleton vertex and vacuously a tree.

The main observation is the following.

If ∣E(G)∣ = ∣V (G)∣−1 for some connected graph, then there must exist v ∈ V (G)
with degG(v) = 1.

This follows from the handshake lemma. Since G is connected and ∣V (G)∣ ≥ 2, we get
degG(v) ≥ 1 for all v. If there was no degree 1 vertex, then we would get degG(v) ≥ 2
for all v, and the handshake lemma would imply 2∣E(G)∣ ≥ 2∣V (G)∣. This contradicts
∣E(G)∣ = ∣V (G)∣ − 1.

Now suppose G is the smallest counterexample to the above theorem. Let v be any vertex
in G with degG(v) = 1. Let (v, u) ∈ E(G) be the unique edge incident on v. We consider the
graph G′ = G−v. As in the previous theorem, one can argue G′ is connected (I leave this to the
reader – but please try to write this proof without looking above). Since ∣E(G′)∣ = ∣V (G′)∣−1,
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and G was the smallest counterexample, we get G′ is a tree. But G = G′ + (v, u) for some
v ∉ V (G′). This introduces no cycles, and v is connected to any other x ∈ V (G) because u is
connected to any other x ∈ V (G). This implies G is a tree.

b
Exercise: Show that the connectedness is needed. That is, describe a graph with G with ∣E(G)∣ =
∣V (G)∣ − 1 which is not a tree.

Proof. Let me also add a proof via the usual induction route (predicates and all). Here goes.

Define P (n) to be the predicate which takes the value true if for all connected graphs G =
(V,E) on n vertices with ∣E(G)∣ = ∣V (G)∣ − 1, the graph G is a tree. We want to prove
∀n ∈ N ∶ P (n) is true. We proceed via induction.

Base Case. P (1) is true. Vacuously/Obviously. Any graph on 1 vertex is a tree.

Inductive Case. Fix any natural number k ≥ 1. Assume P (k) is true. We desire to prove
P (k + 1) is true. That is, we desire to prove

Given any graph G = (V,E) with ∣V ∣ = k+1, and G is connected, and ∣E∣ = ∣V ∣−1,
then G is a tree.

To this end, fix and arbitrary connected graph G which has k + 1 vertices and k edges. We
need to show this is a tree.

Ok, we already know G is connected. So we need to prove G has no cycles.

Observation 1: G is connected, and ∣V (G)∣ ≥ 2, so degG(v) ≥ 1. There cannot be 0 degree
vertices.

Key Observation: Handshake lemma gives us ∑v∈V (G) degG(v) = 2∣E(G)∣ = 2(∣V (G)∣ − 1) =
2∣V (G)∣ − 2. This implies some vertex v ∈ V (G) must have degG(v) = 1. Why? If not, then all
vertices have degG(v) ≥ 2, which in turn would imply ∑v∈V (G) degG(v) ≥ 2∣V (G)∣. But the
sum is < 2∣V (G)∣.
Now, consider this vertex v and the edge (v, u) in the graph G. Construct a new graph
G′ ∶= G − v. That is, delete vertex v and the edge (u, v). Two things:

• ∣E(G′)∣ = ∣E(G)∣ − 1, ∣V (G′)∣ = ∣V (G)∣ − 1, and therefore

∣E(G′)∣ = ∣V (G′)∣ − 1

• G′ is connected. This prood is similar to the previous theorem and I am leaving this as
an exercise.

Therefore, since P (k) is true, and since ∣V (G′)∣ = k, G′ is connected, and ∣E(G′)∣ = ∣V (G′)∣−1,
we get by the induction hypothesis, G′ is a tree. In particular, G′ has no cycles.

Remember what we had to show? We had to show G had no cycles. Well suppose it did.
Every vertex in this cycle would have degree ≥ 2 since they lie on a cycle. In particular, v is
not on this cycle, and neither is the edge (u, v). That is, this cycle is also present in G′. But
G′, we just established, has no cycles. And so, we can assert G has no cycles.

By induction, we have ∀n ∈ N ∶ P (n) is true, which is precisely what we wanted to prove.
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