
CS 30: Discrete Math in CS (Winter 2020): Lecture 2 + 3
Date: 8th January, 2020 (Wednesday) + 9th January, 2020 (X-hour)

Topic: Functions, Propositional Logic
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.

Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

1 Functions

1. Definition. A function is a mapping from one set to another. The first set is called the domain
of the function, and the second set is called the co-domain. For every element in the domain,
a function assigns a unique element in the co-domain.

Notationally, this is represented as
f ∶ A→ B

where A is the set indicating the domain dom(f), and B is the set indicating the co-domain
codom(f). For every a ∈ A, the function maps the value of a↦ f(a) where f(a) ∈ B.

The range of the function is the subset of the co-domain which are actually mapped to. That is,
b ∈ B is in the range if and only if there is some element a ∈ A such that f(a) = b. The range
can also be written in the set-builder notation as

range(f) ∶= {f(a) ∶ a ∈ A}

Remark: For any function f with finite domains and ranges, we have ∣range(f)∣ ≤ ∣dom(f)∣

2. An Example. Suppose

A = {1,2,3}, and B = {5,6}, then the map f(1) = 5, f(2) = 5, f(3) = 6 is a valid function.

A is the domain. B is the co-domain. In this example, B also happens to be the range.

3. The Identity Function. When the domain is the same as the co-domain, the idenitity function
id ∶ A→ A maps a ∈ A to a↦ a.

4. More Examples.

• Usually (say in calculus) a function is described as a formula like f(x) = x2. Henceforth,
whenever you see a function ask your self how does it map to the above definition. In
this example, this is as follows.
the domain is R, the set of real numbers, and so is the co-domain. The map is x ↦ x2

– check both are real numbers. The range of the function is the set of non-negative real
numbers (sometimes denoted as R+).

• f(x) = sinx is a function whose domain is R and the range is the interval [−1,1].
• A (deterministic) computer program/algorithm is also a function; its domain is the set

of possible inputs and its range is the set of possible outputs.

1



Remark: How about the function f(x) =

√

x? Is this a function? When you think about it,
you see some issues if we don’t define the domain and co-domain. For instance, if the domain
contains negative numbers, then what is

√

−1? Ok, so perhaps the domain is all positive real
numbers. However, we also have a problem with

√

4 – is it mapping to +2 or −2? Note it can
only map to a unique number. This can be resolved by stating the domain and co-domain are
both non-negative reals, and the x↦

√

x goes to the positive root.

b

Exercise: Given a set A = {1,2,3} and B = {4,5,6}, describe a function f whose range is {5},
and describe a function g whose range is {4,6}. Just to get a feel, how many functions can you
describe of the first form (whose range is {5}), and how many functions can you describe of the
second form?

5. Sur-, In-, Bi- jective functions. A function f ∶ A→ B is

• surjective, if the range is the same as the co-domain. That is, for every element b ∈ B
there exists some a ∈ A such that f(a) = b. Such functions are also called onto functions.
For example, if A = {1,2,3} and B = {5,6}, and consider the function f ∶ A → B with
f(1) = 5, f(2) = 5, and f(3) = 6. Then, f is surjective. This is because for 5 ∈ B there is
1 ∈ A such that f(1) = 5 and for 6 ∈ B there is a 3 ∈ A such that f(3) = 6.

Remark: If A and B are finite sets, and f ∶ A → B is a surjective function, then
∣B∣ ≤ ∣A∣?

• injective, if there are no collisions. That is, for any two elements a ≠ a′ ∈ A, we have
f(a) ≠ f(a′). Such functions are also called one-to-one functions.
For example, if A = {1,2,3} and B = {5,6,7,8}, and consider the function f ∶ A → B
with f(1) = 5, f(2) = 6, and f(3) = 8. Then, f is injective. This is because f(1), f(2), f(3)
are all distinct numbers.

Remark: If A and B are finite sets, and f ∶ A → B is an injective function, then
∣A∣ = ∣range(f)∣. Thus, ∣A∣ ≤ ∣B∣.

Injective functions have inverses. Formally, given any injective function f ∶ A → B, we
can define a function f−1 ∶ range(f)→ A as follows

f−1(b) = a where a is the unique a ∈ A with f(a) = b.

• bijective, if the function is both surjective and injective.
For example, if A = {1,2,3,4} and B = {2,4,6,8}, then the function f(x) = 2x defined
over the domain A and co-domain B is a bijective function. Can you see why?

Remark: If A and B are finite sets, and f ∶ A→ B is a bijective function, then ∣B∣ = ∣A∣?
We will see this useful fact many times in the combinatorics module.

2



6. Composition of Functions. Given a function f ∶ A → B and a function g ∶ B → C, one can
define the composition of g and f , denoted as g ○ f with domain A and co-domain C as
follows:

(g ○ f)(a) = g(f(a)) that is a↦ g(f(a))

Note this is well defined since for every a ∈ A, f(a) ∈ B, and thus g(f(a)) ∈ C.

Examples

• Suppose A = {1,2,3} and B = {5,6} and C = {3,4}. Also suppose f ∶ A → B is defined
as f(1) = 5, f(2) = 6, and f(3) = 5; and g ∶ B → C is defined as g(5) = 3 and g(6) = 4,
then the composed function is (g ○ f)(1) = 3, (g ○ f)(2) = 4, and (g ○ f)(3) = 3.

• If f ∶ R → R+ defined as f(x) = x2 and g ∶ R+ → R+ defined as g(x) =
√

x (as defined
above), then (convince yourself) that (g ○ f)(x) returns the absolute value of x.

• If f ∶ A → B is a bijection, and f−1 ∶ B → A is its inverse, convince yourself that
(f−1 ○ f) ∶ A→ A is the id ∶ A→ A identity function.

2 Propositional Logic

1. Atomic Propositions/ Boolean Variables. A proposition is a statement which takes one of the
two Boolean values {true, false}. Here are a few examples.

(a) p ∶ (2 + 2 = 4).

(b) q ∶ (Nairobi is the capital of the USA).

(c) r ∶ (It will rain sometime tomorrow.).

Clearly, p is a proposition which takes value true, and q is a proposition which takes a value
false. r is a proposition regarding the future, and its value will be determined tomorrow. As
of now, it is a Boolean variable.

2. Compound Propositions/ Boolean Formulas. One can form compound propositions by
taking atomic propositions and joining them together using operations. For instance, the
following statement: “Either 2 + 2 = 4, or Nairobi is the capital of the USA” contains a ei-
ther...or... of two atomic statements. One of them is true, one of them is false, but since one is
true it renders the compound statement, true.

Compound Propositions are obtained by doing operations on Boolean Variables, and are
often referred to as Boolean Formulas.

3. Logic Operators.

• Negation. Given a proposition p, the proposition q = ¬p is defined to take the value
true if p takes the value false, and vice-versa, that is, q takes the value false if p takes the
value true.
For example, if p ∶ (2 + 2 = 4), then q = ¬p is defined as q ∶ (2 + 2 ≠ 4).

• OR and AND. Given two atomic propositions p, q:

3



– The proposition p ∨ q is true if and only if at least one (and possibly both) of p and q
take the value true.

– The proposition p ∧ q takes the value true if and only if both p and q take the value
true.

For example, if p ∶ (7 is even) and q = (14 is even), then

– p ∨ q is true since q is true.
– p ∧ q is false since p is false. b

Exercise: Suppose we had three atomic propositions p, q, r. When would p ∨ (q ∨ r) be
true? When would p ∧ (q ∧ r) be true?

• Implications. The final operation we look at is implications. The proposition p ⇒ q is
supposed to capture the proposition stating “if p is true, then q is true”. The definition
is that p⇒ q has truth value false only if p has truth value true and q has truth value false.
For example, consider the statement “If it rains tomorrow, then I will not deliver mail
tomorrow” Suppose p is the proposition “It will rain tomorrow” and q is the proposi-
tion “I will not deliver mail tomorrow.”, then the above statement is captured by the
proposition (p⇒ q).
Both p and q are atomic propositions. “Tomorrow” will decide what the values p and q
take. If it rains, p takes the value true, otherwise it takes the value false. If I do deliver
mail tomorrow, q takes the value false, otherwise it takes the value true.
What about the proposition r = (p ⇒ q) though? Well, if it does rain tomorrow and I
don’t deliver mail, then r takes the value true. And, if it rains tomorrow but I do deliver
mail, then r takes the value false. But the slightly interesting situation is if it doesn’t rain
tomorrow (that is, if p takes the value false). Suppose, furthermore, you did not deliver
mail either (so q takes the value true.) What value do you think r takes? It takes the
value true – the implication “still holds”; if the premise is false, then I can make any
statement I want.
Another example: The statement “If the sun rises in the West, then I am Batman” is
true. It doesn’t matter whether I am Batman or not; the sun doesn’t rise in the West, and
so I can say any garbage after “If the sun rises in the West,...” and the implication is still
true. Useless, but true. To contrast this, consider the slightly different statement “If the
sun rises in the East, then I am Batman”. Well this, if I read it, is false. Sun does rise
in the East, and I am not Batman; ergo, the implication is untrue. (Of course, if Batman
reads it, he would think it is true.)
Formally, (p⇒ q) is true unless p takes the value true and q takes the value false.

4. Truth Tables. This is perhaps the most important construct in this lecture. Given a com-
pound proposition, one can completely understand it by looking at the truth table, that is,
the value this compound proposition takes given the possible settings of the underlying
atomic propositions.

Below are the truth tables of the various operations above. b

4



p q = ¬p

true false

false true

p q p ∨ q

true true true

true false true

false true true

false false false

p q p ∧ q

true true true

true false false

false true false

false false false

p q p⇒ q

true true true

true false false

false true true

false false true

Exercise: Write the truth tables of:

• p ∨ (q ∨ r) and p ∧ (q ∧ r).

• ¬p ∨ q

• p ∧ (q ∨ r), and (p ∨ q) ∧ (p ∧ r).

5. Order of Operations. Just as in arithmetic, with logical operations there is an order in which
they are applied. If the parantheses are not provided, then the first precedence is given to ¬.
Then comes the ORs and ANDs – these are always parenthesized. And the last in order are
implications.

For example, the compound proposition p ⇒ p ∨ q actually means p ⇒ (p ∨ q) instead of
(p⇒ p) ∨ q. Similarly, ¬p ∨ q means (¬p) ∨ q and not ¬(p ∨ q). Generally, when in doubt put
parenthesis.

6. Logical Equivalence. Two compound propositions/formulas are logically equivalent if they
have the same truth tables. Here is an important example which expresses the ⇒ using OR
and negations.

p⇒ q ≡ ¬p ∨ q (Implication as OR)

The proof of the above equivalence is described by the following truth table.

7. Important Equivalences. There are many important equivalences which one should inter-
nalize. They are listed below. You should (a) first get a feeling of these using plain English,
and (b) then formally check all of them by writing truth tables. Think of this as one big
exercise.

• (Negation of Negation.) ¬(¬p) ≡ p.

5



p q p⇒ q ¬p ¬p ∨ q

true true true false true

true false false false false

false true true true true

false false true true true

• (Operation with true, false.) p ∧ true ≡ p; p ∨ true ≡ true; p ∧ false ≡ false; p ∨ false ≡ p.

• (Idempotence.) p ∧ p ≡ p; p ∨ p ≡ p.

• (Operation with Negation.) p ∧ ¬p ≡ false; p ∨ ¬p ≡ true.

• (Irrelevance.) p ∨ (p ∧ q) ≡ p; p ∧ (p ∨ q) ≡ p.

• (Commutativity.)

– p ∨ q ≡ q ∨ p.
– p ∧ q ≡ q ∧ p.

• (Associativity.)

– p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r.
– p ∧ (q ∧ r) ≡ (p ∧ q) ∧ r.

• (Distributivity.)

– p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r).
– p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r).

• (Implications as an OR.) p⇒ q ≡ ¬p ∨ q.

• (De Morgan’s Law.) ¬(p ∨ q) ≡ ¬p ∧ ¬q; ¬(p ∧ q) ≡ ¬p ∨ ¬q.
b

Exercise: Show (p ∧ q)⇒ q is ≡ true.

8. Tautologies, Contradictions, and Satisfiability.

A formula φ is a tautology if it takes the truth value true no matter what values the underlying
variables take. That is, φ is logically equivalent to true. We have already see one tautology:
p ∨ ¬p in the operation with negation.

Here is another example
φ ∶= p ∧ (p⇒ q)⇒ q

One way to check this the truth table.

p q p⇒ q p ∧ (p⇒ q) p ∧ (p⇒ q)⇒ q

true true true true true

true false false false true

false true true false true

false false true false true

6



Another way is to reduce the formula as follows to prove that the formula is equivalent to
true.

p ∧ (p⇒ q)⇒ q ≡ p ∧ (¬p ∨ q)⇒ q Implication as OR
≡ ((p ∧ ¬p) ∨ (p ∧ q))⇒ q Distributivity
≡ (false ∨ (p ∧ q))⇒ q Operation with Negation
≡ (p ∧ q)⇒ q Operation with false

≡ true Exercise

A formula φ is a contradiction or unsatisfiable if it takes the truth value false no matter what
values the underlying variables take. That is, φ is logically equivalent to false. b

Exercise: Prove that the following formula is a contradiction

((¬p ∧ q) ∨ (p ∧ ¬q)) ∧ (p⇒ q) ∧ (q⇒ p)

A formula φ is satisfiable if there is some setting of the underlying variables which makes it
true. That is, it is not unsatisfiable.

7


	Functions
	Propositional Logic

