
CS 30: Discrete Math in CS (Winter 2020): Lecture 22
Date: 17th February, 2020 (Monday)

Topic: Graphs: Matchings and Hall’s Theorem
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.

Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

1. Matchings. A matching M in a graph is a subset of edges M ⊆ E such that for any e, e′ ∈M ,
e ∩ e′ = ∅. That is, M is a collection of edges which do not share end points. A vertex v ∈ V
participates in the matching M if there is an edge in M which is incident to v.

These are fundamental objects and have numerous applications. For instance, in economics,
where the bipartite graph contains agents on one side and items on the other, where the
edges represent desirable items, and each agent has only a demand of one item, then a
matching corresponds to an allocation of desirable items to these agents.

A matching is a perfect matching if every vertex of V appears in some edge of the matching.

2. Matchings in Bipartite Graphs. In this course, we look at matchings in bipartite graphs. To
this end, fix a bipartite graph G = (V,E) where V has been partitioned in to L ∪R. We say
that a matching M ⊆ E is an L-matching if all vertices in L participate in M . Similarly, a
matching M is an R-matching if all vertices in R participate in M . A bipartite graph has a
perfect matching if and only if it has an L-matching and an R-matching.

Given a graph, how can we tell whether or not there is an L-matching (likewise R-matching)?
Today, we are going to state an amazing theorem (called Hall’s theorem) which gives the nec-
essary and sufficient conditions for a bipartite graph to have an L-matching. Then, we look
at some applications of this theorem. Next class, we will prove this remarkable theorem. This
may be the deepest theorem you learn in this course.

Before, we state the theorem, let us recall some notions. The neighborhood of a vertex v in
G is the set NG(v) ∶= {u ∈ V ∶ (u, v) ∈ E}. Note that when G is bipartite, and if v ∈ L, then
NG(v) ⊆ R. And vice-versa. Next, we generalize the definition of neighborhood to subsets of
vertices. Given any subset S ⊆ L, we define

NG(S) ∶= ⋃
v∈S

NG(v)

That is, we take the union of all the neighborhoods of vertices in S. In English, NG(S) is the
set of vertices in R which have at least one neighboring vertex in S. Figure 1 shows three
examples of subsets and their neighborhoods in a given graph

Now we are ready to state Hall’s theorem.

Theorem 1 (Hall’s Theorem). Let G = (V,E) be a bipartite graph with V = L ∪R. Then,
G has an L-matching if and only if

For every subset S ⊆ L, ∣NG(S)∣ ≥ ∣S∣

Corollary 1. A bipartite graph G = (L∪R,E) has a perfect matching if and only for any S ⊆ L
or S ⊆ R we have ∣NG(S)∣ ≥ ∣S∣.
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Figure 1: Examples of S and NG(S) in a bipartite graph.

Going back to Figure 1, Hall’s theorem says if G doesn’t have an L-matching, then there
must be some subset S ⊆ L such that ∣NG(S)∣ < ∣S∣. As it happens, this example has a perfect
matching, and so every subset S ⊆ L must have ∣NG(S)∣ ≥ ∣S∣.

Remark: Going back to the Prover-Verifier mode of thinking, imagine you have a bipartite
graph G = (L ∪R,E), and you wish to know if there is an L-matching or not. The Prover is all
powerful, and can easily find the answer out. But you also need a certificate of whether what
they are claiming is correct or not.

In case G has an L-matching, this certificate is easy — Prover just shows the L-matching. As
Verifiers, we check if all purported edges are indeed present and also check if they don’t intersect,
etc.

If G does not have an L-matching, then the Prover resorts to Hall’s theorem. They know that
there must exist some subset S ⊆ L such that ∣NG(S)∣ < ∣S∣ (if not, then Hall’s condition holds,
and the graph has an L-matching). And this subset S is what they send. And we, as verifiers,
figure out NG(S), see that ∣NG(S)∣ < ∣S∣, and we are now convinced G cannot have an L-
matching — if it did, then all vertices of S would have to be matched to ∣S∣many distinct vertices
in NG(S), but ∣NG(S)∣ < ∣S∣.

3. Applications of Hall’s Theorem We show two applications and in the UGP we explore a
few more.

• Left-dominant bipartite graphs. A bipartite graph G = (L∪R,E) is left dominant if degG(x) ≥
degG(y) for any x ∈ L and any y ∈ R. The Hall’s theorem shows that any left-dominant
graph with no isolated vertices has an L-matching.

Proof. By Hall’s theorem, it suffices to show that for any subset S ⊆ L, ∣NG(S)∣ ≥ ∣S∣. To
this end, fix a subset S.
Let Dmin ∶= minx∈S degG(x) and Dmax ∶= maxy∈NG(S) degG(y). G being left-dominant
means Dmin ≥Dmax. No isolated vertices implies Dmin,Dmax ≠ 0.
Now consider the graph H induced by (S∪NG(S)); let H = (S∪NG(S),ES). Note that
degH(x) = degG(x) for all x ∈ S, and degH(y) ≤ degG(y) for all v ∈ NG(S). The latter
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holds since we only delete vertices and edges; the former holds because all neighbors
of x ∈ S are present in H .
Next note (from the drill)

(a) ∣ES ∣ = ∑u∈S degH(v) = ∑u∈S degG(u) ≥Dmin ⋅ ∣S∣, and
(b) ∣ES ∣ = ∑w∈NG(S) degH(w) ≤ ∑w∈NG(S) degG(w) ≤Dmax ⋅ ∣NG(S)∣.
Thus, we get,

Dmin ⋅ ∣S∣ ≤ ∣ES ∣ ≤Dmax ⋅ ∣NG(S)∣

implying ∣NG(S)∣ ≥ ∣S∣ since Dmin,Dmax ≠ 0.
b

Exercise: Prove that a regular bipartite graph always has a perfect matching.

• Completeing Latin Rectangles to Latin Squares.
We did not have time to do this application in class. I find it really cool, and I’ll see if we have
time on Wednesday (doubt it). Please read and see if you can grok it. Read in pairs if need be.
A Latin rectangle is an r × n matrix with r ≤ n. Each entry of the matrix has numbers
from an alphabet {a1, a2, . . . , an}. Think of these as colors – more vibrant that way! The
constraint is that any row and any column has no repeating entry. So, if we go up a
column or left-to-right a row, no color is repeated.
So, for example, the following are examples of Latin rectangles; one is a 2 × 5 and the
other is a 3 × 5.

a1 a2 a3 a4 a5
a2 a3 a4 a5 a1

a1 a2 a3 a4 a5
a3 a1 a4 a5 a2
a2 a5 a1 a3 a4

An n×n Latin rectangle is called a Latin square. A completion of an r×n Latin rectangle
is an n × n Latin square whose first r rows is the Latin rectangle. The question is:

Can every Latin rectangle be completed?

And the answer is:

Theorem 2. Every Latin rectangle can be completed.

Proof. Let us fix an r×n Latin rectangle T . Now, we show how to construct an (r+1)×n
Latin rectangle whose first r rows are the rows of T . We can then repeat this till we get
our desired Latin square.
We do so by using Hall’s theorem! Pause here for a moment. There are no graphs
mentioned. And yet, Hall’s theorem? The main a ha! moment is to construct a bipartite
graph using T . We do so as follows.
We construct a bipartite graph G = (L∪R,E). L is the set of colors {a1, a2, . . . , an}. R is
the set of positions of the (r + 1)th row, given by {1,2, . . . , n}. We have an edge (ai, j)
in E if the color ai does not appear in the jth column of T . That is, the color ai is a
feasible candidate to be put in the jth column of the (r + 1)th row. This completes the
description of the graph. As an illustration, for the 3 × 5 table shown above, we would
have the graph as in Figure 2.
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Figure 2: Construction of graph from Latin rectangle

Now observe: if G has a L-matching, then we can fill the (r + 1)th row. Indeed, if the
matching has the edge (ai, j)we put the color ai on the jth column of the (r+ 1)th row.
To show that G has a perfect matching, we show that G is a left-dominant graph, that
is, every x ∈ L, every y ∈ R satisfies degG(x) ≥ degG(y).
Fix a vertex x ∈ L. What is degG(x)? For each column of the (r + 1)th row, exactly r
colors are disallowed and so (n − r) colors are allowed. Thus, degG(x) = n − r.
Now fix a vertex y ∈ R. What is degG(y)? This is the number of columns of the (r+1)th
row in which the number y can be put. This is precisely the columns in which y doesn’t
appear. But y appears in r different columns, and thus the number of columns free for
y is also (n − r). Thus, not only is G left-dominant, but rather it is a regular graph; all
degrees are equal.
Therefore, G has a L-matching. And thus, one can add an (r + 1)th row to this Latin
rectangle. And go on like this till one gets a Latin square.
Again, we illustrate it to get the 4th row for the 3 × 5 rectangle shown in the previous
page. Recall, Figure 2 was the corresponding bipartite graph. We see (as we should)
that it is regular, and thus it contains an L-matching. Indeed, one of the matchings is
shown below in Figure 3 below.
Given this matching, one sees that the 4th row as being (a5, a4, a2, a1, a3) (because 1
matched to a5, 2 matched to a4 and so on), which when slapped onto the rectangle
gives us

a1 a2 a3 a4 a5
a3 a1 a4 a5 a2
a2 a5 a1 a3 a4
a5 a4 a2 a1 a3
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Figure 3: A matching in the graph from Latin rectangle
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