CS 30: Discrete Math in CS (Winter 2020): Lecture 23

Date: 19th February, 2020 (Wednesday) Topic: Graphs: Proof of Hall's Theorem Disclaimer: These notes have not gone through scrutiny and in all probability contain errors. Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

1. **Recap.**

A graph G = (V, E) is *bipartite* if there is partition of $V = L \cup R$ such that $L \cap R = \emptyset$ and for every edge $e = (u, v) \in R$, we have $|\{u, v\} \cap L| = |\{u, v\} \cap R| = 1$. That is, every edge has exactly one endpoint in L and exactly one endpoint in R.

A *matching* M in a graph is a subset of edges $M \subseteq E$ such that for any $e, e' \in M$, $e \cap e' = \emptyset$. That is, M is a collection of edges which do not share end points. A vertex $v \in V$ participates in the matching M if there is an edge in M which is incident to v. In a bipartite graph $G = (L \cup R, E)$, a matching $M \subseteq E$ is an L-matching if all vertices in L participate in M.

2. Hall's Theorem Given any subset $S \subseteq L$, we $N_G(S)$ are the set of vertices in R which neighbors of some vertex in S. Hall's Theorem says the following.

Theorem 1. Let G = (V, E) be a bipartite graph with $V = L \cup R$. Then, G has an L-matching if and only if

For every subset
$$S \subseteq L$$
, $|N_G(S)| \ge |S|$ (Hall's Condition)

Proof. Again, one direction is easy. That is, if $G = (L \cup R, E)$ has an *L*-matching, then we must have (Hall's Condition). Why? Suppose there exists an *L*-matching called *M*. Then for any $S \subseteq L$, consider the set $T = \{v \in R : \exists u \in S : (u, v) \in M\}$. That is, look at all the partners in *M*, of vertices in *S*. Clearly, $T \subseteq N_G(S)$, and thus, $|N_G(S)| \ge |T|$. And |T| = |S| since every vertex in *S* has a partner in *M* (*M* is an *L*-matching). So, $|N_G(S)| \ge |S|$.

The interesting direction is the converse. Given that (Hall's Condition) holds, we need to prove that $G = (L \cup R, E)$ has an *L*-matching. We will prove by induction. In fact, I will show two proofs. One proof is by induction on the number of *edges* — this is the proof we almost did to completion in class (I will point the part we didn't finish). The second proof is by induction on the number of *vertices*. Both of them are deep proofs, in that it has layers. So hold tight!

Proof Number 1.

Let P(m) be the predicate which is true if any bipartite graphs $G = (L \cup R, E)$ with |E| = m satisfying (Hall's Condition) has an *L*-matching.

We need to show $\forall m \in \mathbb{N} : P(m)$ is true; we proceed to prove this by induction.

Base Case: Is P(1) true? Fix a bipartite graph $G = (L \cup R, E)$ with only one edge (u, v) with $u \in L$ and $v \in R$. Does G have an L-matching. The main observation is that in this

case *L* has to be the singleton set $\{u\}$. Why? If not, that is, if *L* contained a vertex $w \neq u$, then $\deg_G(w) = 0$ since (u, v) is the only edge in *G*. But then the set $S = \{w\}$ would *violate* (Hall's Condition). Thus, $L = \{u\}$, and in this case the matching $M = \{(u, v)\}$ is the desired *L*-matching.

Inductive Case: Fix a natural number *k*. We assume $P(1), P(2), \ldots, P(k)$ are all true. That is,

Any bipartite graph $G' = (L' \cup R', F)$ with $|F| \le k$ and which satisfies (Hall's Condition), has an L' matching.

We wish to prove P(k+1). To that end, we fix a bipartite graph $G = (L \cup R, E)$ which satisfies (Hall's Condition) and |E| = k + 1.

Let (u, v) be an *arbitrary* edge in *G*. Consider the graph G' = G - e. Note, $G' = (L \cup R, E \times \{(u, v)\})$. See an illustration in Figure 1

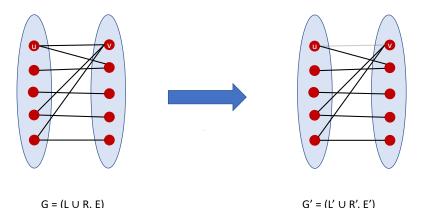


Figure 1: Illustration of going from G to G'

Case 1: G' satisfies (Hall's Condition). This is a nice accident to have. Why? Well, |E(G')| = |E(G)| - 1 = k. Thus, by the fact that P(k) is true, we get that since *G'* satisifies Hall's condition, *G'* has an *L*-matching called *M'*. The vertex set didn't change — same *L*. And thus, the same *M'* is also an *L*-matching in *G*. We are done. Therefore, the maximum fun is to be had in the next case, when *G'* doesn't satisfy Hall's condition. This is where we are going to focus our energy now.

Case 2: G' does not satisfy (Hall's Condition). What does this mean? It means there is some subset $S^* \subseteq L$ such that $|N_{G'}(S^*)| < |S^*|$. This is illustrated in Figure 2. We make a few crucial observations about this set S^* ; so crucial, we are going to encapsulate them in a *lemma*. A lemma is an interesting statement to be proven on our journey in the proof of a theorem.

Lemma 1. Let S^* be a subset of L which satisfies $|N_{G'}(S^*)| < |S^*|$. Then,

(a) $u \in S^*$.

- (b) For all $w \in S^* \setminus u$, we know $(w, v) \notin E(G)$.
- (c) $|N_G(S^*)| = |S^*|$.

Proof. To prove this, consider any subset $S \subseteq L$ and let us ask ourselves how do the sets $N_G(S)$ and $N_{G'}(S)$ look like? Recall, G' = G - (u, v). So, if these neighborhoods of S are indeed different in these different graphs, they can only differ in v and that also only if (i) $u \in S$, and (ii) no other vertex $w \in S \setminus u$ has an edge to v. If any of the above don't hold, then note that $N_G(S) = N_{G'}(S)$. Indeed, if $u \notin S$, the presence or absence of the edge (u, v) doesn't play any role in determining the neighborhood of S. Furthermore, the only way $N_{G'}(S)$ can be now smaller is if (u, v) was the *only* edge from vertices in S to v; otherwise v would be in $N_{G'}(S)$ as well.

Thus we get part (a) and (b). To see part (c), we note that the previous argument also implies $|N_{G'}(S)| \ge |N_G(S)| - 1$; if the neighborhood drops, it can only drop by this vertex v. Thus, if $|S^*| > |N_{G'}(S^*)|$ and $|S^*| \le |N_G(S^*)|$, then the only way this can occur if (c) is true; the Hall's condition holds with equality on S^* .

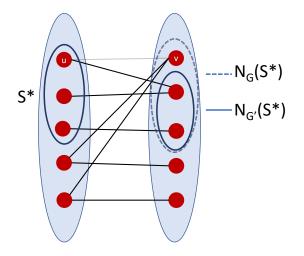


Figure 2: The set S^* if G' doesn't satisfy (Hall's Condition)

The fact that $|N_G(S^*)| = |S^*|$ implies that if *G* had an *L*-matching (and we are trying to prove it does), then all the vertices of S^* would have to match to some vertex in $N_G(S^*)$ and viceversa. However, the vertex $v \in N_G(S^*)$ has only *one* neighbor *u* in S^* (by part(b)). Thus, if *G* has an *L*-matching, the edge (u, v) better be in it! And so, we should remove it, and then hope we can prove the remaining graph has an (L - u)-matching as well. Indeed, this motivates the following definition.

Let *H* be the graph obtained by deleting both *vertices u* and *v*, and all edges incident on either vertex, from *G*. That is, $H = G - \{u, v\}$. More precisely,

$$H = (L' \cup R', F) \quad \text{where} \quad L' = L - u, \quad R' = R - v, \quad F = E - (\partial_G(u) \cup \partial_G(v))$$

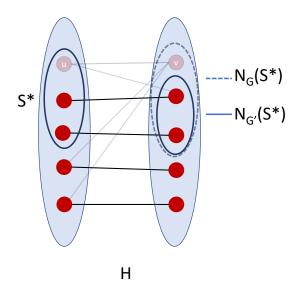


Figure 3: The graph H

This is illustrated in Figure 3.

Note that $|E(H)| \le |E(G)| - 1$ because at the very least the edge (u, v) is deleted. However, |E(H)| could be much less; let's call it the number m.

The next lemma is the crucial one. We assert that this graph *H* satisfies (Hall's Condition).

Lemma 2. For every subset $T \subseteq L'$, we have $|N_H(T)| \ge |T|$. That is, H satisfies (Hall's Condition)

Before we prove Lemma 2, let us see that if we believe it, we are done. And then we can prove the claim. Indeed, if $H = (L' \cup R', F)$ satisfies (Hall's Condition) and because $|E(H)| = m \le k$, by the fact that P(m) is true, we know H has an L'-matching, call it M'. And then, we can use this matching to obtain an L-matching in G. How? Simply define $M = M' \cup \{(u, v)\}$. Since u was the only vertex missing from L' and since v doesn't even appear in R', the set M is a matching and an L-matching at that. We would have established P(k + 1). Thus, the only thing that remains is to prove Lemma 2.

Proof of Lemma 2. We proceed by contradiction. Suppose not. Suppose there is a bad set $B \subseteq L'$ such that $|N_H(B)| < |B|$. Figure 4 (left side) is an illustration of such a set.

Once again, as in the proof of Lemma 1, let is investigate the sets $N_G(S)$ and $N_H(S)$ for *any* set *S*. The *only* difference between $N_G(S)$ and $N_H(S)$ at all can be the vertex *v*; that is the *only* vertex removed from our set *R* to get *R'*. Thus,

$$|N_H(S)| = \begin{cases} |N_G(S)| - 1 & \text{if } v \in N_G(S) \\ |N_G(S)| & \text{otherwise} \end{cases}$$
(1)

Furthermore, since $|N_H(B)| < |B|$, that is, $|N_H(B)| \le |B| - 1$, and since $|N_G(B)| \ge |B|$ (for *G* satisfies (Hall's Condition)), using (1) we can assert

$$|N_G(B)| = |B| \quad \text{and} \quad |N_H(B)| \ge |N_G(B)| - 1 \quad \text{implying} \quad v \in N_G(B) \tag{2}$$

Just to give an intuition of how the proof goes, let us assume *not without loss of generality* that B was *disjoint* from S^* . This is what we did in class, and I believe it really tells what is going on. I am going to do the full proof after this.

The key thing is to look at the neighborhood of the set $B \cup S^*$ in the graph *G*. See Figure 4 (right side) for this. We see,

$$N_G(B \cup S^*) = N_G(B) \cup N_G(S^*)$$
 and $v \in N_G(B) \cap N_G(S^*)$

The latter follows from (2) and the fact that $u \in S^*$ and $(u, v) \in E(G)$. Therefore, by the baby inclusion exclusion, we get

$$|N_G(B \cup S^*)| = |N_G(B)| + |N_G(S^*)| - |N_G(B) \cap N_G(S^*)| \le |N_G(B)| + |N_G(S^*)| - 1 = |B| + |S^*| - 1$$

If *B* and S^* are disjoint, then $|B \cup S^*| = |B| + |S^*|$, and thus, we get $|N_G(B \cup S^*)| \le |B \cup S^*| - 1$. This *contradicts* (Hall's Condition). And thus our supposition that there was a bad set must be wrong. That is, *H* satisfies (Hall's Condition) as well.

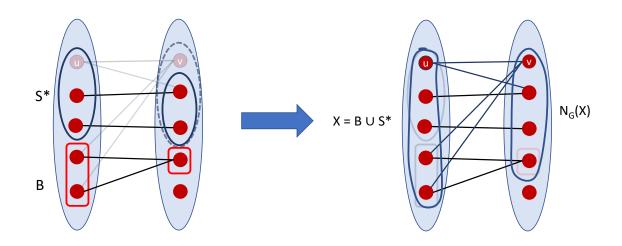


Figure 4: A bad set in *H* violating (Hall's Condition), and how it implies a violation of (Hall's Condition) in *G* if it were disjoint from S^* .

However, *B* may not be disjoint from S^* . In that case, we need to a little more work. Now that you have come so far, stick with me a bit more.

We first partition *B* into the part that is disjoint from S^* and the part that is not. Let $A := B \\ S^*$ and $C = B \\ S^*$. That is, *C* is the set of common vertices between *C* and S^* and *A* is disjoint from S^* . See Figure 5 for an illustration.

The following claim asserts that A cannot have too many neighbors "outside" $N_G(S^*)$.

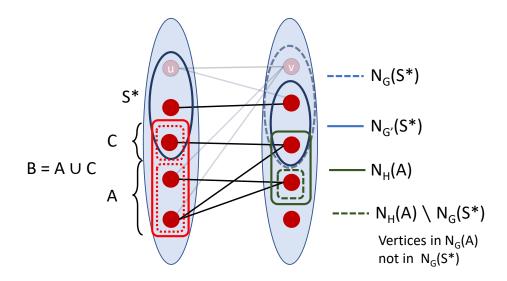


Figure 5: A bad set *B* in *H* violating (Hall's Condition) which intersects S^* .

Claim 1. $|N_H(A) \smallsetminus N_G(S^*)| \le |A| - 1$

Why is this claim useful? Firstly, note: $N_H(A) \setminus N_G(S^*) = N_G(A) \setminus N_G(S^*)$ because the only vertex $N_G(A)$ and $N_H(A)$ can possibly differ in is v which is already in $N_G(S^*)$. Therefore, the claim implies

$$|N_G(A) \smallsetminus N_G(S^*)| \le |A| - 1 \tag{3}$$

Now consider the set $X = A \cup S^*$. We have

$$|N_G(A \cup S^*)| = |N_G(S^*)| + |N_G(A) \setminus N_G(S^*)|$$

that is, the neighbors of the set $A \cup S^*$ in *G* are the neighbors of S^* plus the number of neighbors *A* has "outside" S^* . Plugging in part (c) of Lemma 1 and (3), we get

$$|N_G(A \cup S^*)| = |S^*| + |A| - 1 < |A \cup S^*|$$

where we used the fact that *A* and S^* are disjoint to get $|A| + |S^*| = |A \cup S^*|$. But this is a contradiction to the fact that *G* satisfies (Hall's Condition). So our supposition is wrong, thus completing the proof of Lemma 2.

So all that remains (phew!) is

Proof of Claim 1. Suppose not; suppose for the sake of contradiction

$$|N_H(A) \smallsetminus N_G(S^*)| \ge |A| \tag{4}$$

Recall the bad set $B = A \cup C$. Thus, the neighborhood $N_H(B)$ definitely contains all $N_H(C)$ (see Figure 5 for illustration), and also $N_H(A) \setminus N_G(S^*)$. And these two sets are disjoint. Therefore, the size of $N_H(B)$ is at least the sum of sizes of these two sets. In math,

$$|N_{H}(B)| \ge |N_{H}(C)| + |N_{H}(A) \setminus N_{G}(S^{*})|$$
(5)

The final thing: what is $|N_H(C)|$? Here we are going to use part (b) of Lemma 1 (we never really used it so far). We know that for all vertices w in L' which are in S^* , there is no edge from w to v in G. Therefore, $v \notin N_G(C)$ for C defined above. Thus, by (1), we get that $|N_H(C)| = |N_G(C)|$. And since G satisfies (Hall's Condition), we get

$$|N_H(C)| = |N_G(C)| \ge |C|$$
 (6)

Substituting (6) and (4) into (5), we get

$$|N_H(B)| \ge |A| + |C| = |B|$$

where the last equality follows since *B* is the union of disjoint sets *A* and *C*. But *B* was a bad set with $|N_H(B)| < |B|$. Contradiction. Thus the claim must be true.

Proof Number 2.

Let P(n) be the predicate which is true if any bipartite graphs $G = (L \cup R, E)$ with |L| = n satisfying (Hall's Condition) has an *L*-matching.

We need to show $\forall n \in \mathbb{N} : P(n)$ is true; we proceed to prove this by induction.

Base Case: Is P(1) true? Fix any graph $G = (L \cup R, E)$ with |L| = 1. Let $L = \{v\}$. (Hall's Condition) implies, $\deg_G(v) \ge 1$. So, there is some edge (v, w) incident on v. $M = \{(v, w)\}$ is an *L*-matching. So, P(1) is true.

Inductive Case: Fix a natural number k. We assume $P(1), P(2), \ldots, P(k)$ are all true. We wish to prove P(k + 1). To that end, we fix a bipartite graph $G = (L \cup R, E)$ which satisfies (Hall's Condition) and |L| = k + 1.

Let $u \in L$ be an arbitrary vertex. (Hall's Condition) implies $deg(u) \ge 1$, thus there is at least one edge $(u, v) \in E$. Pick one such edge *arbitrarily*. Consider the graph $G' = G - \{u, v\}$. That is, we delete both **vertices** u and v (and not just the edge (u, v)). G' is also a bipartite graph, with $G = (L' \cup R', E')$ where L' = L - u, R' = R - v and $E' = E \setminus (N_G(u) \cup N_G(v))$. See Figure 6 for an illustration.

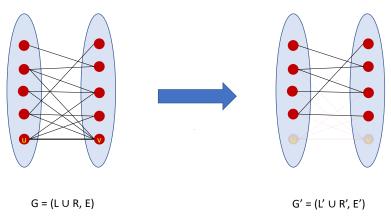


Figure 6: Deleting the vertices *u* and *v*.

We now fork into two cases.

Case 1: G' satisfies (Hall's Condition). This is the easy case. Since |L'| = |L| - 1 = k, and since by the induction hypothesis, P(k) is true, we get that *G'* has an *L'*-matching; let's call it *M'*. Then, $M := M' \cup (u, v)$ is the required *L*-matching in *G*. So in this case, we have proven P(k + 1).

Case 2: G' *doesn't satisfy* (Hall's Condition). What does this mean? It means there is some subset $S \subseteq L'$, such that $|N_{G'}(S)| < |S|$. On the other hand, since G did satisfy (Hall's Condition), we have $|N_G(S)| \ge |S|$. Finally, note that the only way $N_{G'}(S)$ and $N_G(S)$ can be different is that if $N_G(S)$ has the vertex v in it. And in that case, $N_{G'}(S) = N_G(S) \setminus v$. See Figure 7 for an illustration.

Therefore, we have $v \in N_G(S)$ and furthermore, $|N_G(S)| = |S|$; if $|N_G(S)| > |S|$, then indeed, $|N_G(S)| \ge |S| + 1$ because the LHS is an integer, which in turn implies $|N_{G'}(S)| = |N_G(S)| - 1 \ge |S|$.

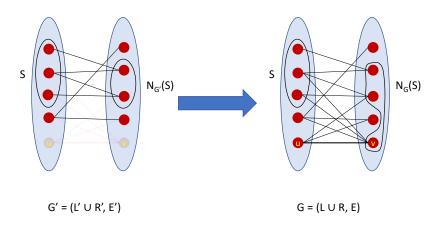


Figure 7: How to related $N_{G'}(S)$ and $N_G(S)$.

Now, we consider two different graphs. We consider $G_1 = G[S \cup N_G(S)]$ and $G_2 = G[(L \setminus S) \cup (R \setminus N_G(S))]$. Recall, the notion of induced subgraphs. See Figure 8 for an illustration.

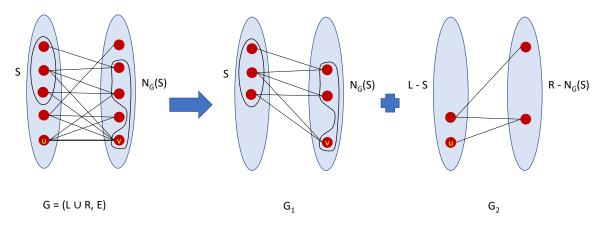


Figure 8: Breaking into two graphs.

Claim 2. Both G_1 and G_2 satisfy (Hall's Condition).

Proof. Let's first prove for G_1 . Any subset $T \subseteq S$ has $N_G(T) \subseteq N_G(S)$. Thus, $N_{G_1}(T) = N_G(T)$ as well. Since G satisfied (Hall's Condition), we get $|N_{G_1}(T)| = |N_G(T)| \ge |T|$. Thus, G_1 satisfies (Hall's Condition).

Moving on to G_2 . Fix a subset $T \subseteq L \setminus S$. What is $N_{G_2}(T)$? Here is an useful observation:

$$N_{G_2}(T) = N_G(T) \setminus N_G(S) = N_G(S \cup T) \setminus N_G(S)$$

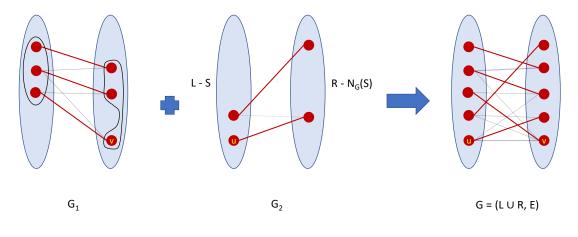
The first equality follows since the neighbors of T in G_2 are precisely the neighbors of T in G which are not the neighbors of S in G. The second equality is the clever part; it is noting that even if we look at neighbors of $S \cup T$ in G and remove the neighbors of S, we still get the neighbors of T in G which are not in $N_G(S)$. Why is this useful? Because, $N_G(S) \subseteq N_G(S \cup T)$. Thus, we know that $|N_G(S \cup T) \setminus N_G(S)| = |N_G(S \cup T)| - |N_G(S)|$.

Putting all together, we get

$$|N_{G_2}(T)| = |N_G(S \cup T)| - |N_G(S)| \ge |S \cup T| - |S| = |T|$$

where the inequality follows since $|N_G(S \cup T)| \ge |S \cup T|$ by (Hall's Condition) and since $|N_G(S)| = |S|$, and the second equality follows since $S \cap T = \emptyset$.

Since both G_1 and G_2 satisfy (Hall's Condition), and since both |S| and $|L \setminus S|$ are $\langle |L|$, by the induction hypothesis, we get that G_1 has an *S*-matching called M_1 and G_2 has an $L \setminus S$ -matching called M_2 . Thus, $M_1 \cup M_2$ is the *L*-matching in *G*.



Done!