
CS 30: Discrete Math in CS (Winter 2020): Lecture 23
Date: 19th February, 2020 (Wednesday)
Topic: Graphs: Proof of Hall’s Theorem

Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.
Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

1. Recap.

A graph G = (V,E) is bipartite if there is partition of V = L ∪R such that L ∩R = ∅ and for
every edge e = (u, v) ∈ R, we have ∣{u, v}∩L∣ = ∣{u, v}∩R∣ = 1. That is, every edge has exactly
one endpoint in L and exactly one endpoint in R.

A matching M in a graph is a subset of edges M ⊆ E such that for any e, e′ ∈ M , e ∩ e′ = ∅.
That is, M is a collection of edges which do not share end points. A vertex v ∈ V participates
in the matching M if there is an edge in M which is incident to v. In a bipartite graph
G = (L ∪R,E), a matching M ⊆ E is an L-matching if all vertices in L participate in M .

2. Hall’s Theorem Given any subset S ⊆ L, we NG(S) are the set of vertices in R which neigh-
bors of some vertex in S. Hall’s Theorem says the following.

Theorem 1. Let G = (V,E) be a bipartite graph with V = L ∪ R. Then, G has an L-
matching if and only if

For every subset S ⊆ L, ∣NG(S)∣ ≥ ∣S∣ (Hall’s Condition)

Proof. Again, one direction is easy. That is, if G = (L ∪ R,E) has an L-matching, then we
must have (Hall’s Condition). Why? Suppose there exists an L-matching called M . Then for
any S ⊆ L, consider the set T = {v ∈ R ∶ ∃u ∈ S ∶ (u, v) ∈ M}. That is, look at all the partners
in M , of vertices in S. Clearly, T ⊆ NG(S), and thus, ∣NG(S)∣ ≥ ∣T ∣. And ∣T ∣ = ∣S∣ since every
vertex in S has a partner in M (M is an L-matching). So, ∣NG(S)∣ ≥ ∣S∣.

The interesting direction is the converse. Given that (Hall’s Condition) holds, we need to
prove that G = (L ∪ R,E) has an L-matching. We will prove by induction. In fact, I will
show two proofs. One proof is by induction on the number of edges — this is the proof we
almost did to completion in class (I will point the part we didn’t finish). The second proof
is by induction on the number of vertices. Both of them are deep proofs, in that it has layers.
So hold tight!

Proof Number 1.

Let P (m) be the predicate which is true if any bipartite graphs G = (L∪R,E) with
∣E∣ =m satisfying (Hall’s Condition) has an L-matching.

We need to show ∀m ∈ N ∶ P (m) is true; we proceed to prove this by induction.

Base Case: Is P (1) true? Fix a bipartite graph G = (L ∪ R,E) with only one edge (u, v)
with u ∈ L and v ∈ R. Does G have an L-matching. The main observation is that in this
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case L has to be the singleton set {u}. Why? If not, that is, if L contained a vertex w ≠ u,
then degG(w) = 0 since (u, v) is the only edge in G. But then the set S = {w} would violate
(Hall’s Condition). Thus, L = {u}, and in this case the matching M = {(u, v)} is the desired
L-matching.

Inductive Case: Fix a natural number k. We assume P (1), P (2), . . . , P (k) are all true. That
is,

Any bipartite graph G′ = (L′∪R′, F ) with ∣F ∣ ≤ k and which satisfies (Hall’s Condition),
has an L′ matching.

We wish to prove P (k+1). To that end, we fix a bipartite graph G = (L∪R,E) which satisfies
(Hall’s Condition) and ∣E∣ = k + 1.

Let (u, v) be an arbitrary edge in G. Consider the graph G′ = G − e. Note, G′ = (L ∪ R,E ∖

{(u, v)}). See an illustration in Figure 1

G = (L ∪ R, E) G’ = (L’ ∪ R’, E’)

u v u v

Figure 1: Illustration of going from G to G′

Case 1: G′ satisfies (Hall’s Condition). This is a nice accident to have. Why? Well, ∣E(G′)∣ =
∣E(G)∣ − 1 = k. Thus, by the fact that P (k) is true, we get that since G′ satisifies Hall’s
condition, G′ has an L-matching called M ′. The vertex set didn’t change — same L. And
thus, the same M ′ is also an L-matching in G. We are done. Therefore, the maximum fun
is to be had in the next case, when G′ doesn’t satisfy Hall’s condition. This is where we are
going to focus our energy now.

Case 2: G′ does not satisfy (Hall’s Condition). What does this mean? It means there is some
subset S∗ ⊆ L such that ∣NG′(S

∗
)∣ < ∣S∗∣. This is illustrated in Figure 2. We make a few crucial

observations about this set S∗; so crucial, we are going to encapsulate them in a lemma. A
lemma is an interesting statement to be proven on our journey in the proof of a theorem.

Lemma 1. Let S∗ be a subset of L which satisfies ∣NG′(S
∗
)∣ < ∣S∗∣. Then,

(a) u ∈ S∗.
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(b) For all w ∈ S∗ ∖ u, we know (w, v) ∉ E(G).

(c) ∣NG(S∗)∣ = ∣S∗∣.

Proof. To prove this, consider any subset S ⊆ L and let us ask ourselves how do the sets
NG(S) and NG′(S) look like? Recall, G′ = G − (u, v). So, if these neighborhoods of S are
indeed different in these different graphs, they can only differ in v and that also only if (i)
u ∈ S, and (ii) no other vertex w ∈ S ∖ u has an edge to v. If any of the above don’t hold, then
note that NG(S) = NG′(S). Indeed, if u ∉ S, the presence or absence of the edge (u, v) doesn’t
play any role in determining the neighborhood of S. Furthermore, the only way NG′(S) can
be now smaller is if (u, v) was the only edge from vertices in S to v; otherwise v would be in
NG′(S) as well.

Thus we get part (a) and (b). To see part (c), we note that the previous argument also implies
∣NG′(S)∣ ≥ ∣NG(S)∣ − 1; if the neighborhood drops, it can only drop by this vertex v. Thus, if
∣S∗∣ > ∣NG′(S

∗
)∣ and ∣S∗∣ ≤ ∣NG(S∗)∣, then the only way this can occur if (c) is true; the Hall’s

condition holds with equality on S∗.

u v

S*
NG’(S*)

NG(S*)

Figure 2: The set S∗ if G′ doesn’t satisfy (Hall’s Condition)

The fact that ∣NG(S∗)∣ = ∣S∗∣ implies that if G had an L-matching (and we are trying to prove
it does), then all the vertices of S∗ would have to match to some vertex in NG(S∗) and vice-
versa. However, the vertex v ∈ NG(S∗) has only one neighbor u in S∗ (by part(b)). Thus,
if G has an L-matching, the edge (u, v) better be in it! And so, we should remove it, and
then hope we can prove the remaining graph has an (L − u)-matching as well. Indeed, this
motivates the following definition.

Let H be the graph obtained by deleting both vertices u and v, and all edges incident on either
vertex, from G. That is, H = G − {u, v}. More precisely,

H = (L′ ∪R′, F ) where L′ = L − u, R′ = R − v, F = E − (∂G(u) ∪ ∂G(v))
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u v

S*
NG’(S*)

NG(S*)

H

Figure 3: The graph H

This is illustrated in Figure 3.

Note that ∣E(H)∣ ≤ ∣E(G)∣ − 1 because at the very least the edge (u, v) is deleted. However,
∣E(H)∣ could be much less; let’s call it the number m.

The next lemma is the crucial one. We assert that this graph H satisfies (Hall’s Condition).

Lemma 2. For every subset T ⊆ L′, we have ∣NH(T )∣ ≥ ∣T ∣.
That is, H satisfies (Hall’s Condition)

Before we prove Lemma 2, let us see that if we believe it, we are done. And then we can prove
the claim. Indeed, if H = (L′∪R′, F ) satisfies (Hall’s Condition) and because ∣E(H)∣ =m ≤ k,
by the fact that P (m) is true, we know H has an L′-matching, call it M ′. And then, we can
use this matching to obtain an L-matching in G. How? Simply define M = M ′

∪ {(u, v)}.
Since u was the only vertex missing from L′ and since v doesn’t even appear in R′, the set
M is a matching and an L-matching at that. We would have established P (k + 1). Thus, the
only thing that remains is to prove Lemma 2.

Proof of Lemma 2. We proceed by contradiction. Suppose not. Suppose there is a bad set
B ⊆ L′ such that ∣NH(B)∣ < ∣B∣. Figure 4 (left side) is an illustration of such a set.

Once again, as in the proof of Lemma 1, let is investigate the sets NG(S) and NH(S) for any
set S. The only difference between NG(S) and NH(S) at all can be the vertex v; that is the
only vertex removed from our set R to get R′. Thus,

∣NH(S)∣ =

⎧
⎪⎪
⎨
⎪⎪
⎩

∣NG(S)∣ − 1 if v ∈ NG(S)

∣NG(S)∣ otherwise
(1)
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Furthermore, since ∣NH(B)∣ < ∣B∣, that is, ∣NH(B)∣ ≤ ∣B∣ − 1, and since ∣NG(B)∣ ≥ ∣B∣ (for G
satisfies (Hall’s Condition)), using (1) we can assert

∣NG(B)∣ = ∣B∣ and ∣NH(B)∣ ≥ ∣NG(B)∣ − 1 implying v ∈ NG(B) (2)

Just to give an intuition of how the proof goes, let us assume not without loss of generality
that B was disjoint from S∗. This is what we did in class, and I believe it really tells what is
going on. I am going to do the full proof after this.

The key thing is to look at the neighborhood of the set B ∪ S∗ in the graph G. See Figure 4
(right side) for this. We see,

NG(B ∪ S∗) = NG(B) ∪NG(S∗) and v ∈ NG(B) ∩NG(S∗)

The latter follows from (2) and the fact that u ∈ S∗ and (u, v) ∈ E(G). Therefore, by the baby
inclusion exclusion, we get

∣NG(B∪S∗)∣ = ∣NG(B)∣+ ∣NG(S∗)∣− ∣NG(B)∩NG(S∗)∣ ≤ ∣NG(B)∣+ ∣NG(S∗)∣−1 = ∣B∣+ ∣S∗∣−1

If B and S∗ are disjoint, then ∣B ∪S∗∣ = ∣B∣+ ∣S∗∣, and thus, we get ∣NG(B ∪S∗)∣ ≤ ∣B ∪S∗∣−1.
This contradicts (Hall’s Condition). And thus our supposition that there was a bad set must
be wrong. That is, H satisfies (Hall’s Condition) as well.

u v

S*

B

u v

X = B ∪ S*
NG(X)

Figure 4: A bad set in H violating (Hall’s Condition), and how it implies a violation of
(Hall’s Condition) in G if it were disjoint from S∗.

However, B may not be disjoint from S∗. In that case, we need to a little more work. Now
that you have come so far, stick with me a bit more.

We first partition B into the part that is disjoint from S∗ and the part that is not. Let A ∶=

B ∖ S∗ and C = B ∩ S∗. That is, C is the set of common vertices between C and S∗ and A is
disjoint from S∗. See Figure 5 for an illustration.

The following claim asserts that A cannot have too many neighbors “outside” NG(S∗).
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u v

S*

C

A

B = A ∪ C

NG’(S*)

NG(S*)

Vertices in NG(A)
not in  NG(S*)

NH(A) ∖ NG(S*)

NH(A)

Figure 5: A bad set B in H violating (Hall’s Condition) which intersects S∗.

Claim 1. ∣NH(A) ∖NG(S∗)∣ ≤ ∣A∣ − 1

Why is this claim useful? Firstly, note: NH(A)∖NG(S∗) = NG(A)∖NG(S∗) because the only
vertex NG(A) and NH(A) can possibly differ in is v which is already in NG(S∗). Therefore,
the claim implies

∣NG(A) ∖NG(S∗)∣ ≤ ∣A∣ − 1 (3)

Now consider the set X = A ∪ S∗. We have

∣NG(A ∪ S∗)∣ = ∣NG(S∗)∣ + ∣NG(A) ∖NG(S∗)∣

that is, the neighbors of the set A ∪ S∗ in G are the neighbors of S∗ plus the number of
neighbors A has “outside” S∗. Plugging in part (c) of Lemma 1 and (3), we get

∣NG(A ∪ S∗)∣ = ∣S∗∣ + ∣A∣ − 1 < ∣A ∪ S∗∣

where we used the fact that A and S∗ are disjoint to get ∣A∣ + ∣S∗∣ = ∣A ∪ S∗∣. But this is
a contradiction to the fact that G satisfies (Hall’s Condition). So our supposition is wrong,
thus completing the proof of Lemma 2.

So all that remains (phew!) is

Proof of Claim 1. Suppose not; suppose for the sake of contradiction

∣NH(A) ∖NG(S∗)∣ ≥ ∣A∣ (4)
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Recall the bad set B = A ∪C. Thus, the neighborhood NH(B) definitely contains all NH(C)

(see Figure 5 for illustration), and also NH(A) ∖ NG(S∗). And these two sets are disjoint.
Therefore, the size of NH(B) is at least the sum of sizes of these two sets. In math,

∣NH(B)∣ ≥ ∣NH(C)∣ + ∣NH(A) ∖NG(S∗)∣ (5)

The final thing: what is ∣NH(C)∣? Here we are going to use part (b) of Lemma 1 (we never
really used it so far). We know that for all vertices w in L′ which are in S∗, there is no edge
from w to v in G. Therefore, v ∉ NG(C) for C defined above. Thus, by (1), we get that
∣NH(C)∣ = ∣NG(C)∣. And since G satisfies (Hall’s Condition), we get

∣NH(C)∣ = ∣NG(C)∣ ≥ ∣C ∣ (6)

Substituting (6) and (4) into (5), we get

∣NH(B)∣ ≥ ∣A∣ + ∣C ∣ = ∣B∣

where the last equality follows since B is the union of disjoint sets A and C. But B was a
bad set with ∣NH(B)∣ < ∣B∣. Contradiction. Thus the claim must be true.
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Proof Number 2.

Let P (n) be the predicate which is true if any bipartite graphs G = (L∪R,E) with
∣L∣ = n satisfying (Hall’s Condition) has an L-matching.

We need to show ∀n ∈ N ∶ P (n) is true; we proceed to prove this by induction.

Base Case: Is P (1) true? Fix any graph G = (L∪R,E) with ∣L∣ = 1. Let L = {v}. (Hall’s Condition)
implies, degG(v) ≥ 1. So, there is some edge (v,w) incident on v. M = {(v,w)} is an L-
matching. So, P (1) is true.

Inductive Case: Fix a natural number k. We assume P (1), P (2), . . . , P (k) are all true. We
wish to prove P (k + 1). To that end, we fix a bipartite graph G = (L ∪R,E) which satisfies
(Hall’s Condition) and ∣L∣ = k + 1.

Let u ∈ L be an arbitrary vertex. (Hall’s Condition) implies deg(u) ≥ 1, thus there is at least
one edge (u, v) ∈ E. Pick one such edge arbitrarily. Consider the graph G′ = G − {u, v}. That
is, we delete both vertices u and v (and not just the edge (u, v)). G′ is also a bipartite graph,
with G = (L′∪R′,E′) where L′ = L−u, R′ = R−v and E′ = E∖(NG(u) ∪NG(v)). See Figure 6
for an illustration.

u v

G = (L ∪ R, E) G’ = (L’ ∪ R’, E’)

u v

Figure 6: Deleting the vertices u and v.

We now fork into two cases.

Case 1: G′ satisfies (Hall’s Condition). This is the easy case. Since ∣L′∣ = ∣L∣ − 1 = k, and since
by the induction hypothesis, P (k) is true, we get that G′ has an L′-matching; let’s call it M ′.
Then, M ∶= M ′

∪ (u, v) is the required L-matching in G. So in this case, we have proven
P (k + 1).

Case 2: G′ doesn’t satisfy (Hall’s Condition). What does this mean? It means there is some sub-
set S ⊆ L′, such that ∣NG′(S)∣ < ∣S∣. On the other hand, since G did satisfy (Hall’s Condition),
we have ∣NG(S)∣ ≥ ∣S∣. Finally, note that the only way NG′(S) and NG(S) can be different is
that if NG(S) has the vertex v in it. And in that case, NG′(S) = NG(S) ∖ v. See Figure 7 for
an illustration.
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Therefore, we have v ∈ NG(S) and furthermore, ∣NG(S)∣ = ∣S∣; if ∣NG(S)∣ > ∣S∣, then indeed,
∣NG(S)∣ ≥ ∣S∣+1 because the LHS is an integer, which in turn implies ∣NG′(S)∣ = ∣NG(S)∣−1 ≥
∣S∣.

G’ = (L’ ∪ R’, E’)

u v

S
NG’(S)

G = (L ∪ R, E)

u v

S
NG(S)

Figure 7: How to related NG′(S) and NG(S).

Now, we consider two different graphs. We consider G1 = G[S∪NG(S)] and G2 = G[(L ∖ S)∪

(R ∖NG(S))]. Recall, the notion of induced subgraphs. See Figure 8 for an illustration.

G = (L ∪ R, E)

u v

S
NG(S)

G1

v

S
NG(S)

G2

u

L - S R - NG(S)

Figure 8: Breaking into two graphs.

Claim 2. Both G1 and G2 satisfy (Hall’s Condition).

Proof. Let’s first prove for G1. Any subset T ⊆ S has NG(T ) ⊆ NG(S). Thus, NG1(T ) =

NG(T ) as well. Since G satisfied (Hall’s Condition), we get ∣NG1(T )∣ = ∣NG(T )∣ ≥ ∣T ∣. Thus,
G1 satisfies (Hall’s Condition).
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Moving on to G2. Fix a subset T ⊆ L ∖ S. What is NG2(T )? Here is an useful observation:

NG2(T ) = NG(T ) ∖NG(S) = NG(S ∪ T ) ∖NG(S)

The first equality follows since the neighbors of T in G2 are precisely the neighbors of T
in G which are not the neighbors of S in G. The second equality is the clever part; it is
noting that even if we look at neighbors of S ∪ T in G and remove the neighbors of S, we
still get the neighbors of T in G which are not in NG(S). Why is this useful? Because,
NG(S) ⊆ NG(S ∪ T ). Thus, we know that ∣NG(S ∪ T ) ∖NG(S)∣ = ∣NG(S ∪ T )∣ − ∣NG(S)∣.

Putting all together, we get

∣NG2(T )∣ = ∣NG(S ∪ T )∣ − ∣NG(S)∣ ≥ ∣S ∪ T ∣ − ∣S∣ = ∣T ∣

where the inequality follows since ∣NG(S ∪ T )∣ ≥ ∣S ∪ T ∣ by (Hall’s Condition) and since
∣NG(S)∣ = ∣S∣, and the second equality follows since S ∩ T = ∅.

Since both G1 and G2 satisfy (Hall’s Condition), and since both ∣S∣ and ∣L ∖ S∣ are < ∣L∣,
by the induction hypothesis, we get that G1 has an S-matching called M1 and G2 has an
L ∖ S-matching called M2. Thus, M1 ∪M2 is the L-matching in G.

G1

v

G2

u

L - S R - NG(S)

u v

G = (L ∪ R, E)

Done!
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