
CS 30: Discrete Math in CS (Winter 2020): Lecture 24
Date: 21st February, 2020 (Friday)

Topic: Numbers: Modular Arithmetic
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.

Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

1. Definition. Given any integer n > 0 and another integer a (not necessarily positive), the
division theorem1 states that there are unique integers q, r such that a = qn+ r with 0 ≤ r < n.
The number r is denoted as amod n.

2. Examples. For example, 17 mod 3 is 2. This is because 17 = 3 × 5 + 2. Similarly, 13 mod 5 = 3.

Slightly more interestingly, −1 mod 3 = 2. This is because −1 = 3 × (−1) + 2. Similarly, −7 mod
5 = 3 since −7 = 5 × (−2) + 3. b

Exercise: What is 30 mod 7? What is −30 mod 7?

3. The Ring of Integers modulo n.

Fix a positive natural number n. The way to think about the mod n operation is as a func-
tion which takes integers to the set {0,1,2, . . . , n−1} of possible remainders. There is a name
for this set of n remainders; it is called the ring of integers modulo n and is denoted by Zn.

mod n ∶ Z→ Zn a↦ amod n

Why ring? Well just consider how the numbers map. 0 maps to 0, 1 maps to 1, and so on til
(n − 1) maps to (n − 1). But then n maps to 0, it “rings” around to 0, and the process starts
again. (n+ 1)maps to 1 and so on. It also rings the same way for negative numbers. 1 maps
to 1, 0 maps to 0, −1 maps to n − 1, −2 maps to n − 2, and so on.

4. An Important Notation.

The function mod n is clearly not injective. Indeed, any two numbers which map to the
same element are called equivalent modulo n.

Given two integers a, b, we use the notation

a ≡n b

to denote the condition that amod n = bmod n.

5. Important Properties. The following simple but important properties are crucial to be com-
fortable with this new “kind” of math. I would recommend trying to actually prove the facts
by yourself and then peeking at the solution.

1The division theorem may sound “obvious” to you, for this is probably something you have seen from grade school,
but it requires a proof. Why should there be a quotient-remainder pair? And why unique? The UGP explores this if
you want.
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(a) (Equivalence under addition of multiple of n.) For any natural number n and integers
a and b, a ≡n (a + bn).
Suppose amod n = r, that is, a = qn + r. Then, a + bn = qn + r + bn = (q + b)n + r. Thus,
(a + bn)mod n = r as well.

(b) (Transitivity) If a ≡n b and c ≡n b, then a ≡n c.
a ≡n b implies there is some remainder 0 ≤ r < n and quotients q1, q2 ∈ Z such that a = q1n + r
and b = q2n + r. c ≡n b implies there is some q3 such that c = q3n + r. Thus, amod n = r =

cmod n implying a ≡n c.
(c) (Addition OK) Show that if a ≡n b and c ≡n d, then (a + c) ≡n (b + d).

a ≡n b means there is some remainder 0 ≤ r < n and quotients q1, q2 ∈ Z such that a = q1n + r
and b = q2n + r.
Similarly, there is some remainder 0 ≤ s < n and quotients p1, p2 ∈ Z such that c = p1n + s and
d = p2n + s.
Thus, (a + c) = (q1 + p1)n + (r + s) implying (a + c) ≡n (r + s) by equivalence under adding a
multiple of n. Similarly, (b+ d) = (q2 + p2)n+ (r + s) implying (b+ d) ≡n (r + s). Transitivity
implies (a + c) ≡n (b + d).

(d) (Multiplication OK) Show that if a ≡n b and c ≡n d, then (a ⋅ c) ≡n (b ⋅ d).
a ≡n b means there is some remainder 0 ≤ r < n and quotients q1, q2 ∈ Z such that a = q1n + r
and b = q2n + r.
Similarly, there is some remainder 0 ≤ s < n and quotients p1, p2 ∈ Z such that c = p1n + s and
d = p2n + s.
Thus,

(a ⋅ c) = (q1n + r) ⋅ (p1n + s) = (q1p1n
2
+ q1ns + p1nr + rs) = (q1p1n + q1s + p1r)n + rs

and,

(b ⋅ d) = (q2n + r) ⋅ (p2n + s) = (q2p2n
2
+ q2ns + p2nr + rs) = (q2p2n + q2s + p2r)n + rs

Therefore, (a ⋅c) ≡n (r ⋅s) by equivalence under adding a multiple of n, and so is (b ⋅d) ≡n (r ⋅s).
Transitivity implies (a ⋅ c) ≡n (b ⋅ d).

(e) (Powering with a positive integer OK) Let k be a positive natural number. If a ≡n b,
then ak ≡n bk.
Apply the above k times. More precisely, a ≡n b and a ≡n b implies (a ⋅ a) ≡n (b ⋅ b), that is
a2 ≡n b2. One proceeds inductively. If we already have shown ak−1 ≡n bk−1, then along with
the fact a ≡n b, we get (ak−1 ⋅ a) ≡n (bk−1 ⋅ b), that is, ak ≡n bk.

(f) (Division usually not OK) Show an example of numbers a, b, c, n where (a ⋅ b) ≡n (c ⋅ b)
but a /≡n c.
Let me show how I would come up with such an example before telling you the example. If
(ab) ≡n (cb), we know that (ab− cb) ≡n 0, that is (a− c) ⋅ b ≡n 0, or n divides (a− c)b. And we
want an example where a /≡n c that is n doesn’t divide (a − c).
Well, if n divides (a − c)b but not (a − c), one simple example would be when n = b and say
a−c = 1. This leads us to the example n = 5, b = 5, a = 2, c = 1. One can check — (2⋅5) ≡5 (1⋅5)
but 2 /≡5 1.

2



One may then think – hey, if b < n would this be true. Even in this case, the answer is NO. To
see this, again, we want n to divide (a − c)b but n should not divide (a − c). So b could be a
factor of n, and n/b is what divides (a − c) (but not n).
For instance, n = 6 = 2 ⋅ 3, b = 3, a = 7 and c = 5 suffices. Let’s check, Is 21 ≡6 15? Yes, both
give remainder 3 when divided by 6. Is 7 ≡6 5? No, 7 mod 6 = 1 which 5 mod 6 = 5.
Later on, we will see one case when division will be OK. You can perhaps guess (yes, when b and
n are relatively prime).

(g) (Taking “roots” not OK) Show an example of numbers a, b, n and k, such that ak ≡n bk,
but a /≡n b. In fact, show different examples for k = 2 and k = 3.
Once again, the method is more important than the specific example.
Let’s start with k = 2. a2 ≡n b2 means a2 − b2 ≡n 0. That is, (a− b)(a+ b) ≡n 0. So, if n divides
the product of (a− b) and (a+ b). We also want a /≡n b, that is, we want (a− b) /≡n 0. We want
n not to divide (a − b).
Well, if n divides (a − b)(a + b) but not (a − b), one simple example would be when n = a + b
and say a − b = 1. This leads us to the example n = 5, a = 3, b = 2.
Let’s check: 32 ≡5 22 — yes, 9 divided by 5 is 4 which is 22. Is 3 ≡5 2? Of course not.
There’s our counterexample. Do you want to do the k = 3 case on your own? Here’s a hint:
a3 − b3 = (a − b)(a2 + ab + b2).

6. Modular Exponentiation Algorithm

Suppose we want to figure out what is the remainder when we divide 310 by 7, that is, what
is 310(mod7)? The hard and often infeasible way would be to compute 310 and then divide
by 7 to get the remainder. The above operations allow a much faster way to compute this.
Let’s first do an example and then give the whole algorithm.

310 mod 7 = (32)5 mod 7

= 95 mod 7

= (9 mod 7)5 mod 7 Operation (c) above

= 25 mod 7 Progress! From 310 we have moved to 25.

= (2 ⋅ 24)mod 7 Can’t halve 5 as it is odd.

= ((2 mod 7) ⋅ (24 mod 7))mod 7 We have again halved the exponent by moving to 22 = 4.

= (2 ⋅ (42 mod 7))mod 7

= 4

We get 4 when we divide 310 by 7. The general idea was to keep on reducing the exponent
by half by moving to the square, and then replacing the square to a possibly smaller number
by taking the mod “inside”. The full recursive algorithm is shown below.
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1: procedure MODEXP(a, b, n) ▷ Assumes b, n are positive integers.
2: ▷ Returns ab mod n.
3: a← amod n ▷ We first move a to amod n. Always get inside the ring.
4: if b = 1 then:
5: return amod n. ▷ Nothing to do – base case.

6: if b is even then:
7: return MODEXP(a2, b

2 , n)
8: else
9: s = MODEXP (a, (b − 1), n)▷ b − 1 is even.

10: ▷ s = ab−1 mod n.
11: return (a ⋅ s)mod n.

Remark: The first line ensures a ∈ {0,1, . . . , n − 1}. Note that we compute the mod of (a ⋅
s)mod n. The number a ⋅ s is at most n2. Thus, to compute ab mod n one only needs to be
“divide” numbers as big as n2 by n. Thus n is a one or small two-digit number, this all can be
done by hand.

b

Exercise: Evaluate by hand showing all calculations

(a) 1325(mod 7). Answer should be 6.

(b) 2111(mod 12). Answer should be 9.

b

Exercise: Implement the algorithm up in your favorite language.
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