CS 30: Discrete Math in CS (Winter 2020): Lecture 27

Date: 27th February, 2020 (Thursday)

Topic: Numbers: Fermat's Little Theorem

Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.

Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

1. Fermat's Little Theorem.

We will prove the following theorem remarkable in its own right. Tomorrow, we will see how it will lead to an algorithm for public key cryptography.

Theorem 1. Let p be any prime. For any $a \in \mathbb{Z}_p \setminus \{0\}$, $a^{p-1} \equiv_p 1$.

Remark: Note that the above theorem is for $a \in \mathbb{Z}_p \setminus \{0\}$. For any (larger) a with gcd(a, p), we get $a^{p-1} \equiv_p (a \mod p)^{p-1} \equiv_p 1$.

Remark: The above allows us to do must "faster" modular exponentiation (at least by hand) when the modulus is prime. For instance, instantiating the above theorem for a=3 and p=7, we get $3^6 \equiv_7 1$. But we also get $3^{60} \equiv_7 1$ by taking the above to power 10 on both sides (note $1^{10} = 1$). And we also get $3^{61} \equiv_7 3 \cdot 3^{60} \equiv_7 3$.

Exercise: Use Fermat's Little Theorem to find the following (much faster than modular exponentiation):

- (a) $4^{18} \pmod{19}$
- (b) $7^{100} \pmod{11}$
- (c) $13^{100} \pmod{13}$

Proof. The crux of the proof lies in the "dividing out" theorem we did last class. Recall, since every $a \in \mathbb{Z}_p \setminus \{0\}$ has gcd(a, p) = 1, we know that

$$ax \equiv_p ay \Rightarrow x \equiv_p y$$
 (1)

Ø

In particular, if we take two different $x, y \in \mathbb{Z}_p \setminus \{0\}$, then $ax \not\equiv_p ay$, that is, $ax \mod p \neq ay \mod p$.

Remark: In other words, if one considers the function $h_a : \mathbb{Z}_p \setminus \{0\} \to \mathbb{Z}_p \setminus \{0\}$ defined as $h_a(x) = ax \mod p$, then h_a is an injective function.

Furthermore, if we look at the numbers of the form $ax \mod p$ as x ranges in $\mathbb{Z}_p \setminus \{0\}$, then we must see all the numbers in $\mathbb{Z}_p \setminus \{0\}$. Indeed, for any $y \in \mathbb{Z}_p$, we know that $ax \equiv_p y$ has the solution $x \equiv_p a^{-1}y$ in $\mathbb{Z}_p \setminus \{0\}$.

Remark: That is, the function h_a defined above is a surjective function. Together with the fact that it is injective, we get it is bijective. That is, h_a is just a **scrambler** of the numbers in $\mathbb{Z}_p \setminus \{0\}$.

Therefore, we get that the following two sets:

$$A = \mathbb{Z}_p \setminus \{0\} = \{1, 2, \dots, p-1\}$$
 and $B = \{ax \mod p : x \in A\}$

are the same.

Example. Let us just illustrate with p = 7 and a = 3.

x	$ax \bmod p$
1	3
2	1
3	2
4	5
5	1
6	4

Now, since A and B are the same set, we get

$$\prod_{z \in A} z = \prod_{z \in B} z = \prod_{x \in A} h_a(x) = \prod_{x \in A} (ax \bmod p)$$

Taking both sides modulo p, we get

$$\left(\prod_{z\in A} z\right) \equiv_p \left(\prod_{x\in A} (ax)\right) \equiv_p \left(a^{p-1} \cdot \prod_{x\in A} x\right)$$

Let us use the notation $Q := (\prod_{z \in A} z)$ (note Q = (p-1)!). Then, we get

$$Q \equiv_p a^{p-1}Q \tag{2}$$

1

Finally, we assert that gcd(p,Q) = gcd(p,(p-1)!) = 1. To see this, we use a corollary from last time: if p divides mn, then p must divide m or n. Thus, if $gcd(p,Q) \neq 1$ (and therefore must be p since p is a prime), we get p must divide Q. But then, it must divide one of the things that multiply to Q. But each of these are q are q. Therefore, gcd(p,Q) = 1.

And now, we can again apply (1) on (2) to get $a^{p-1} \equiv_p 1$ (cancel Q from both sides).

Exercise: Check if the above would be true if p were not a prime but the only restriction was gcd(a, n) = 1. In particular, find a, n such that gcd(a, n) = 1 but $a^{n-1} \not\equiv_n 1$.

Remark: After doing the above exercise you should ask yourself: where all is the property that p is prime used? If you think about it clearly enough, you will indeed prove that if gcd(a, n) = 1, then there is indeed some number ϕ such that $a^{\phi} \equiv_n 1$. A problem in the UGP explores this.