CS 30: Discrete Math in CS (Winter 2020): Lecture 29

Date: 2nd March, 2020 (Monday)

Topic: Infinite Sets: Countability

Disclaimer: These notes have not gone through scrutiny and in all probability contain errors. Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

- 1. Examples of some infinite sets. A set *S* is an infinite set if $|S| = \infty$. What does that mean? Well, it means that for *any* natural number *N*, one can find > *N* distinct elements of *S*. Here are some examples of infinite sets we will see the next two lectures.
 - (a) *The Naturals.* $\mathbb{N} = \{1, 2, 3, ...\}$
 - (b) The Integers. $\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\} = \{x : x \in \mathbb{N}\} \cup \{-x : x \in \mathbb{N}\} \cup \{0\}$
 - (c) The Rationals. $\mathbb{Q} = \{ \frac{p}{q} : p \in \mathbb{Z}, q \in \mathbb{Z} \setminus \{0\} \}$
 - (d) *The Reals.* ℝ. What are the reals? That is a deep question and forms the first few lectures of an Analysis course. For us, we will go with

$$\mathbb{R}=\{\ \sum_{i=0}^{\infty}\frac{a_i}{10^i},\ a_0\in\mathbb{Z},\ 0\leq a_i\leq 9,\ \forall i\geq 1\}$$

The numbers $a_1, a_2, ...$ form the *decimal notation* of the number denoted as the summation.

- (e) *Python Programs.* P. The set of all possible Python programs.
- (f) *The Strings.* Σ^* . The set of all strings formed by using letters from a *finite set* Σ .
- (g) *Boolean Functions.* F. The set of all functions which assign each natural number a value either 0 or 1.

$$\mathcal{F} \coloneqq \{f : \mathbb{N} \to \{0, 1\}\}$$

For instance the isPrime(n) function is an element of \mathcal{F} .

There are two main points to this and the next lecture.

- There are many kinds of infinities (we will see two).
- The cardinalities of the set of Boolean functions, and the set of Python programs are *different*! Thus, there *must* exists functions which have no programs.

And then, lastly, we will see an *explicit* problem which cannot have any algorithm.

- 2. **Recall.** A function $f : A \to B$ is an *injection* if for any two distinct $a_1 \neq a_2$ in A, we have $f(a_1) \neq f(a_2)$.
- 3. Countable Sets. A set *S* is called *countable* if there exists an injection $f : S \to \mathbb{N}$.

It is called so because the elements of S can be ordered and counted one at a time (although the counting may never finish). More precisely, using f we can devise an ordering of the elements an S and an algorithm which for any natural number k gives the kth number in the ordering. The following code prints this sequence.

1: for n = 1, 2, 3, ... do: $\triangleright n \in \mathbb{N}$

```
2: if there exists some a \in S such that f(a) = n then: \triangleright i.e. f^{-1}(n) \in S
```

3: **Print** *a*

Different injective functions can lead to different orderings.

4. Examples of Countable Sets.

- *Finite sets* are trivially countable. If a set *S* is finite and |S| = k, then the elements of *S* can be renamed as $\{e_1, e_2, \ldots, e_k\}$. The injective function $f(e_i) = i$ implies *S* is countable.
- \mathbb{N} is countable by definition. But there are many more interesting examples.
- Set of Integers. The set \mathbb{Z} is countable. To see this, consider the following function $f : \mathbb{Z} \to \mathbb{N}$. If x > 0, then f(x) = 2x. If $x \le 0$, then f(x) = 2(-x) + 1. Note that the co-domain of this function is indeed the natural numbers.

For instance, f(2) = 4, f(-2) = 5, and f(0) = 1.

Claim 1. The function $f : \mathbb{Z} \to \mathbb{N}$ defined above is injective.

Proof. To see this is injective, we need to show $f(x) \neq f(y)$ for two integers $x \neq y$. We may assume, without loss of generality, x < y. If both x and y are positive, then f(x) = 2x < 2y = f(y). Similarly, if both are non-negative, then we get f(x) = -2x + 1 > -2y + 1 = f(y). The only other case is x is non-negative and y is positive. In this case, f(x) is odd while f(y) is even.

If we use the above algorithm to figure out the ordering of \mathbb{Z} , we get:

$$(0, 1, -1, 2, -2, 3, -3, 4, -4, \cdots)$$

5. Some operations that preserve countability.

Theorem 1. If *S* is countable, and $T \subseteq S$, then *T* is countable.

Proof. If $f : S \to \mathbb{N}$ is an injection, then the restriction of f to T, that is, $g : T \to \mathbb{N}$ defined as g(t) = f(t) is also an injection.

Theorem 2. If *S* is countable and *T* is countable and $S \cap T = \emptyset$, then $S \cup T$ is countable.

Proof. We can use the trick for showing integers are countable.

Let $f : S \to \mathbb{N}$ be the injective function and $g : T \to \mathbb{N}$ be the injective function which show they are countable. We now define a function $h : S \cup T \to \mathbb{N}$ which is injective. Indeed,

$$h(x) = \begin{cases} 2f(x) & \text{if } x \in S. \\ 2g(x) + 1 & \text{if } x \in T. \end{cases}$$

To prove this is an injective function, take any two $a \neq b$ in $S \cup T$. Either both are in S, in which case $h(a) = 2f(a) \neq 2f(b) = h(b)$ where $f(a) \neq f(b)$ for f is an injection. Similarly, if both are in T, then $h(a) \neq h(b)$. If one is in S and the other is in T, then h(a) (if $a \in S$) is even while h(b) is odd. Thus, $h(a) \neq h(b)$ here as well.

Theorem 3. If there is a function $g : A \rightarrow B$ which is an injection, and the set *B* is countable, then the set *A* is countable.

Proof. Since *B* is countable, there is an injective function $f : B \to \mathbb{N}$. We claim that the function $(f \circ g)$ is an injective function from *A* to \mathbb{N} . Indeed, if $a \neq a'$, then $g(a) \neq g(a')$. Let b = g(a) and b' = g(a'). We get $(f \circ g)(a) = f(b)$ and $(f \circ g)(a') = f(b')$. Since $b \neq b'$, we get $(f \circ g)(a) \neq (f \circ g)(a')$.

6. **The Set of Rationals is Countable.** This may be a surprise since the set of rationals are dense, that is, between any two rational numbers, there is a rational number. Nevertheless, they are countable.

To show this, we need to construct an injection $g : \mathbb{Q} \to \mathbb{N}$. For now, we only show an injection of $g : \mathbb{Q}_+ \to \mathbb{N}$ where \mathbb{Q}_+ are all the positive rationals; we leave the extension to the full set of rationals as an exercise.

This can be defined as follows: given any positive rational number z = p/q in the *reduced form* (that is, gcd(p,q) = 1), define

$$z = p/q$$
 $g: z \mapsto 2^p 3^q$

Clearly, the functions maps a positive rational number to a positive integer.

We claim that the above function $g : \mathbb{Q}_+ \to \mathbb{N}$ is injective. To see this, pick two different positive rationals x = p/q and y = r/s such that $x \neq y$. We need to prove $g(x) \neq g(y)$, that is, $2^p 3^q \neq 2^r 3^s$.

Since $x \neq y$, we have $p \neq r$, or $q \neq s$, or both. If $p \neq r$, then the largest power of 2 dividing g(x) and g(y) are different, implying $g(x) \neq g(y)$. If $q \neq s$, then the largest power of 3 dividing g(x) and g(y) are different, implying $g(x) \neq g(y)$. In either case, $g(x) \neq g(y)$.

Exercise: Extend the above proof to give an injection $g : \mathbb{Q} \to \mathbb{N}$. Hint: use the fact that the union of two countable sets is countable.

Þ

Exercise: What ordering of the (positive) rationals does the above give using the algorithm for getting ordering from the injective function? Order the first 7 positive rationals.

7. The Set of Python Programs is Countable.

Indeed, we show the set of strings Σ^* over any finite alphabet Σ is countable. Since $\mathcal{P} \subseteq \Sigma^*$ for Σ given by all the < 200 symbols on your keyboard, Theorem 1 would show \mathcal{P} is countable.

To do this, for any $n \in \mathbb{N} \cup \{0\}$, let us define $\Sigma_n \subseteq \Sigma^*$ be the collection of all strings over the alphabet Σ which have *exactly* length *n*. Clearly,

$$\Sigma^* = \Sigma_0 \cup \Sigma_1 \cup \Sigma_2 \cup \dots = \bigcup_{n=0}^{\infty} \Sigma_n$$

Observation. For any fixed n, the set Σ_n is indeed a *finite* set. Indeed, it has size exactly $|\Sigma|^n$ which is a large but finite number. And therefore, since finite sets are countable, there is at least one injective function

$$f_n: \Sigma_n \to \mathbb{N}$$

For instance, one could look at the *alphabetical ordering* of strings in Σ_n . This is well defined since Σ_n is finite.

And now we are ready to define the injective mapping *h* from Σ^* to \mathbb{N} using the same idea as in rationals. Given any $\sigma \in \Sigma^*$, define

$$h: \sigma \mapsto 2^{|\sigma|} \cdot 3^{f_{|\sigma|}(\sigma)}$$

That is, if $|\sigma| = n$ where $n \in \mathbb{N} \cup \{0\}$, then we map σ to $2^n \cdot 3^{f_n(\sigma)}$.

To see which this is an injection, let us select $\sigma \neq \sigma'$ in Σ^* .

We claim this is an injection. To see this, take $\sigma \neq \sigma'$.

Case 1: $|\sigma| \neq |\sigma'|$. In this case the largest power of 2 dividing $g(\sigma)$ and $g(\sigma')$ are different, and thus the two numbers must be different.

Case 2: $|\sigma| = |\sigma'| = n$. In this case, both lie in Σ_n implying $f_n(\sigma) \neq f_n(\sigma')$. Thus, the largest power of 3 dividing $g(\sigma)$ and $g(\sigma')$ are different, and thus the two numbers must be different.

8. Where are we headed? The fact that P is countable will lead us to the notion of "uncomputable" functions. What does that mean? For this we need to define what a computable function is. We will do so rather informally (and please take CS39 to get the rigorous version of computability) by saying

A function $f : \mathbb{N} \to \{0,1\}$ is computable if there is a python code C taking input an number and outputting 0 or 1, such that for every $n \in \mathbb{N}$, we have C(n) = f(n).

Theorem 4. If every function in \mathcal{F} were computable, then \mathcal{F} would be a countable set.

Proof. We describe an injective map from \mathcal{F} to \mathcal{P} ; we would be done by Theorem 3.

Indeed, gven a function $f \in \mathcal{F}$, since it is computable, there is a code $C \in \mathcal{P}$ which computes it. We claim for two $f \neq f' \in \mathcal{F}$ we can't have the same code C. Indeed, if $f \neq f'$, there exists some $n \in \mathbb{N}$ such that $f(n) \neq f'(n)$. But both are C(n). Contradiction.

Next lecture, we show \mathcal{F} is *uncountable*. And thus, there must exist uncomputable functions.