CS 30: Discrete Math in CS (Winter 2020): Lecture 5

Date: 13th January, 2020 (Monday)

Topic: Proofs via Contradiction

Disclaimer: These notes have not gone through scrutiny and in all probability contain errors. Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

This is one of the most commonly used styles of proof. When faced with a proposition p (either in propositional logic, or predicate logic – often the latter) which we wish to prove true, we *suppose* for the sake of contradiction that p were false. Then we logically deduce something *absurd* (like 0 = 1 or 3 is even), that is, something which we know to be false. This implies that our supposition (which is, p is false) must be wrong. Therefore, the proposition p must be true. This method of proving is also called *reductio ad absurdum* — reduction to absurdity.

Formally, in the jargon of logic, what the above argument captures is the fact that the following formula

 $(\neg p \Rightarrow \mathsf{false}) \Rightarrow p$

is a *tautology*. Can you deduce this from the equivalences?

A final word before we move on to concrete examples. Many times the false is obtained by showing that some other proposition q holds as well as its negation. That is, we end up showing $(\neg p \Rightarrow (q \land \neg q))$. Interestingly, sometimes this proposition is p itself.

Just this lecture, we write down the steps in a list so as to make sure all ideas are clear.

1. A Simple Warm-up.

Lemma 1. For all numbers n, if n^2 is even, then n is even.

Proof.

- (a) Suppose, for the sake of contradiction, the proposition is *not true*.
- (b) That is, there exists a number n such that n^2 is even but n is not even. That is, n is odd. (We negated the predicate logic statement).
- (c) Since *n* is odd, n = 2k + 1 for some integer *k*.
- (d) This implies $n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$.
- (e) That is, n^2 is odd. This is a contradiction to $P(n^2)$, that is, n^2 is even.
- (f) Therefore, our supposition must be wrong, that is, the proposition is true.

Þ

Exercise: Mimic the above proof to prove: For any number n, if n^2 is divisible by 3, then n is divisible by 3.

Þ

Exercise: *Prove by contradiction: the product of a* non-zero *rational number and an irrational number is irrational.*

2. A Pythogorean¹ Theorem.

Theorem 1. $\sqrt{2}$ is irrational.

Proof.

- (a) Suppose, for the sake of contradiction, that $\sqrt{2}$ is indeed rational.
- (b) Since $\sqrt{2}$ is rational, there exists two integers a, b such that $\sqrt{2} = a/b$.
- (c) By dividing out common factors, we may assume gcd(a, b) = 1.
- (d) Since $a/b = \sqrt{2}$, we get $a = \sqrt{2} \cdot b$. Squaring both sides, we get $a^2 = 2b^2$.
- (e) Therefore a^2 is even.
- (f) Lemma 1 implies that *a* is even. And therefore $a = 2\ell$ for some ℓ .
- (g) Therefore, $a^2 = 4\ell$.
- (h) Since $a^2 = 2b^2$, we get $4\ell = 2b^2$, which in turn implies $b^2 = 2k$. That is, b^2 is even.
- (i) Lemma 1 implies that *b* is even.
- (j) Thus, we have deduced both a and b are even. This **contradicts** gcd(a, b) = 1.
- (k) Therefore, our supposition that $\sqrt{2}$ is rational must be wrong. That is, $\sqrt{2}$ is irrational.

Exercise: Mimic the above proof to prove that $\sqrt{3}$ is irrational. How far can you generalize? Can you prove that \sqrt{n} is irrational if n is not a perfect square, that is, n is not a^2 for some integer a?

3. A Euclidean Theorem. Here is another classic example of Proof by Contradiction.

Theorem 2. There are infinitely many primes.

Proof.

- (a) Suppose, for the sake of contradiction, there were only finitely many primes.
- (b) Let *q* be the largest of these primes.
- (c) Therefore, for any number n > q, n is *not* a prime.
- (d) Consider the number n = q! + 1. Recall, $q! = 1 \times 2 \times \cdots \times q$.

¹This is of course not the famous Pythogorean theorem on right angled triangles, but nonetheless a Pythogorean may be the first to have proved it. See https://en.wikipedia.org/wiki/Irrational_number, for instance.

- (e) Since n > q, this n is not a prime.
- (f) Therefore, there exists some prime p such that $p \mid n$.
- (g) Since *q* is the largest prime, $p \le q$.
- (h) But this means $p \mid q!$, which means $p \nmid q! + 1$. That is, $p \nmid n$.
- (i) We have deduced both $p \mid n$ and $p \nmid n$. Contradiction. Thus our supposition is wrong. There are infinitely many primes.

4. The AM-GM inequality

Theorem 3. If *a* and *b* are two positive real numbers, then $a + b \ge 2\sqrt{ab}$.

Proof.

- (a) Suppose for the sake of contradiction, there existed positive reals a, b with $a + b < 2\sqrt{ab}$.
- (b) Since both sides of the above inequality are positive, we can square both sides. That is, $(a+b)^2 < (2\sqrt{ab})^2$.

Please note how crucial the fact that both sides were positive is. Otherwise, we cannot square and maintain the inequality. And indeed, the theorem is incorrect for negative numbers. Consider a = -1 and b = -1. The RHS is 2 but the LHS is -2.

- (c) That is, $a^2 + 2ab + b^2 < 4ab$.
- (d) That is, $a^2 2ab + b^2 < 0$.
- (e) That is, $(a b)^2 < 0$.
- (f) But $(a b)^2 \ge 0$, since it is a square. Thus, we have reached a contradiction.