CS 30: Discrete Math in CS (Winter 2020): Lecture 8
Date: 17th January, 2020 (Friday)
Topic: Induction
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.
Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

Proving Recursive Programs Correct.

Induction is the way to prove that a recursive program is correct. In this lecture we consider a
couple of examples, and in the UGP there is another example.

1. Factorial.

1: procedure FACT(n) > Assume n € N.
2 if n =1 then:

3 return 1

4 else:

5 return n-FACT(n - 1)

We now prove the following

Theorem 1. For all positive integers n, FACT(n) returns n!

Proof. We prove by induction the statement Vn € N : P(n), where P(n) is the predicate
“FACT(n) returns n!”.

Base Case: Let us verify P(1). By definition of the factorial function, 1! = 1. Now, if n = 1,
then Line (3) returns 1. Thus, the base case is verified; P(1) is indeed true.

Inductive Case: Let us now assume for a fixed k € N that P(k) is true. That is FACT(k) indeed
returns k!. We need to prove P(k + 1), that is, we need to prove FACT(k + 1) returns (k + 1)!.

Inspecting Line (5), we see that FACT(k + 1) returns (k + 1) times the number returned by
FACT(k). By the induction hypothesis, the latter number is k!. Therefore, FACT(k + 1) returns
(k+1)-k!=(k+1)!. Therefore, the inductive case is true, and so by induction, the theorem
is proved. O

2. Binary Search

1: procedure BINSEARCH(A, z) > Assume A is sorted strictly increasing.
2 > Returns true if x € A, otherwise returns false.
3 n < A.length.
4: if n = 1 then:
55 if z = A[1] then:
6 return true.
7 else:
8 return false.
9: else:
10: m = |n/2].
11: if z = A[m] then:
12: return true.
13: else if x < A[m] then:
14: return BINSEARCH(A[1: m], z).
15: else: > Thatis, z > A[m]
16: return BINSEARCH(A[m + 1 :n], x).

We say that BINSEARCH works properly on the input (A, z) if it return true when z € A, and
returns false otherwise. The correctness of BINSEARCH amounts to proving the following
theorem.

Theorem 2. For any sorted array of numbers A and any number x, BINSEARCH works
properly on (A, z).

Proof. Let P(n) be the predicate which is true if for any sorted array A of length n and any
x, BINSEARCH works properly on the input (A4, z). We wish to prove Yn € N : P(n). We
proceed by induction.

Base Case. Is P(1) true? That is, given any sorted array A of length 1 (that is, containing
exactly one element), and any z, does BINSEARCH work properly on (A, z)? To answer this,
let us fix a sorted array A and a number z. If z was indeed in the array A, then it must be
that « = A[1]. Line 6 then tells us that in this case BINSEARCH does return true. Similarly, if
x was not in the array A4, then = # A[1]. Line 8 then tells us that in this case BINSEARCH does
return false. Thus, in both cases the algorithm behaves properly. P(1) is thus established to
be true.

Inductive Case. Fix a natural k£ € N. The (strong) induction hypothesis is that P(1), P(2),..., P(k)
are all true. We now need to prove P(k +1). For brevity’s sake, let us call N := k +1; we wish
to prove P(N), and P(a) is true for all a < N. And we have N > 1.

That is, we need to show given given any sorted array A of length N, and any x, BINSEARCH
works properly on (A, z). To this end, let us fix a sorted array A of length NV and an z.

Case 1: « ¢ A. In this case, the algorithm should return false. Since = ¢ A, x #+ A[m]. Thus,
Line 11 does not run. Furthermore, = ¢ A, implies z ¢ A[1: m]and x ¢ A[m +1: N]. Since
both the arrays A[1:m]and A[m+1: N]have lengths | N/2| and [N/2] which are < N for all

N > 1, by the (strong) induction hypothesis we have that both BINSEARCH(A[1 : m],z) and
BINSEARCH(A[m + 1 : N], z) return false. Thus, no matter which of Line 14 or Line 16 runs,
the algorithm BINSEARCH(A[1 : N],z) will return false. Thus, in this case, the algorithm
works properly.

Case 2: = € A. In this case, there is some 1 < j < N such that x = A[j]. If j = m, then
Line 11 will return true. If j < m, then since the array is sorted x = A[j] < A[m]. Thus, Line 14
will run. Since xz € A[1: m] and m = |[N/2] < N, by the (strong) inductive hypothesis, we
know that BINSEARCH(A[1 : m],z) will return true. If j > m, then since the array is sorted
x = A[j] > A[m]. Thus, Line 16 will run. Since x € A[m + 1 : N] whose length is [N /2] < N,
by the (strong) inductive hypothesis, we know that BINSEARCH(A[m +1: N], z) will return
true.

O]

Minimal Counterexample: A Different look at Induction

There is a different, and equivalent, at looking at mathematical induction proofs which, at times,
may be more suitable. This is more of a “proof by contradiction” viewpoint. One assumes the
assertion is false, picks the minimal counterexample to the statement at hand, and then tries to argue
a contradiction. To make things concrete, let is give a “different” proof of something we saw in
class.

Theorem 3. Every natural number > 2 can be written as a product of primes and 1.

Proof. Suppose not. Let n be the minimal counter example to the statement, that is, it is smallest
number which cannot be written as a product of primes and 1. Then n cannot be a prime, for a
prime is a product of primes and 1. So, n = a x b for two numbers a and b which are < n. Since n is
the minimal counter example, both a and b can be expressed as a product of primes and 1. And thus,
so can n which is a contradiction to n being a counterexample. O

Indeed, the above is the same proof. But the mental image one has can differ. Let’s give another
example. In the UGP, you are asked to prove this by induction.

Theorem 4. Suppose a finite number of players play a round-robin tournament, with every-
one playing everyone else exactly once. Each match has a winner and a loser (no ties). We
say that the tournament has a cycle of length m if there exist m distinct players (p1,p2, ..., Pm)
such that p; beats py, ps beats p3, -, p;—1 beats p,,, and p,, beats p;. Clearly this is possible
only for m > 3. If a tournament has at least one cycle, then it has a cycle of length exactly 3.

Proof. Let us consider a tournament with a cycle, and consider among all cycles in the tournament,
any one with the smallest length. Let this be C' = (p1,p2,...,pn) with length m. If m = 3, we are
done. Therefore, suppose, for contradiction’s sake, m > 3. Now consider the players p; and ps.
Since there are no ties, either p; beats ps or p3 beats p;. If p3 beats py, then (p1,p2,p3) is a shorter
cycle (indeed its length is 3). If p; beats ps, then (p1,p3, p4, - .., pm) is a shorter cycle of length m—1.
This contradicts that C' was a smallest cycle. Thus, m = 3. O

3

The Well-Ordering Principle and PMI

What we have used before, implicitly and rather matter-of-fact-ly, is the following axiom called the
well-ordering principle (WOP).

Any non-empty subset S ¢ N has a minimum element z € S. (WOP)
An element z € S is minimum if for all y € S \ x, we have z < y.

Remark: Note that S needs to be non-empty. More importantly, note that if S ¢ Z, then the above
statement is false; consider the set S to be of all negative integers. Finally, note if S ¢ Q., that is, if
it is a subset of positive rationals, then the statement would be false too. Indeed, let S be the set of all
rationals strictly greater than 0. Do you see why S doesn’t have a minimum?

In both the above applications, we have used this principle on a subset generated by the coun-
terexamples. In the prime factorization example, S was the subset of numbers which cannot be
written as a product of primes and 1. In the tournament example, S was the lengths of the small-
est cycles in tournaments which have cycles but none of length 3. The fact that S was not empty
was assumed for contradiction’s sake. And then the minimal element was used for obtaining a
contradiction.

Let us end by showing that the WOP can be used to prove the principle of mathematical induc-
tion (PMI). Recall, the principle of mathematical (strong) induction (PMI) states that

Theorem 5 (Induction). Given predicates P(1), P(2), P(3),...,if
® P(1)is true (base case); and
e ForallkeN, (P(1)AP(2)A--AP(k)) = P(k+1) (inductive case);

then, Vn € N: P(n) is true.

Proof. Suppose not. That is, the base case and the inductive case holds, but P(n) is false for some
non-negative integer n. Indeed, let S ¢ N be the subset of non-negative integers n for which P(n)
is false. By our supposition, S is non-empty. Therefore, by WOP, S has a minimal element x.

Now z > 1 because P(1), as we know by the base-case, is true. Thus the set {1,2,...,z -1}
is not empty. Furthermore, since 1,2,...,2 — 1 are all strictly < z, and z is the minimum element
of S, none of these elements can be in S. Therefore, P(1), P(2), ..., P(x — 1) are all true. Thus,
P(1) A--- A P(z —1) is true. The inductive case then implies P(x) is true. But this contradicts the
fact that =z € S. Thus our supposition is false, and hence PMI is true.]

