Introduction, Equality Testing, Monte Carlo!

1 What are Randomized Algorithms?

* Randomized algorithms are usual algorithms which have an extra resource available to them: they
have access to a stream of independent fair random coins. More pertinently, we assume the algorithm
has access to a subroutine rand(), and each time the algorithm calls it, it obtains a bit which is 0 or
a 1. The probability of seeing either answer is equal to 1/2. Furthermore any two calls to rand()
produces answers which are independent of each other, that is, the call of one rand() does not af-
fect subsequent calls to rand(). In Python 3, for example, one can import random and then use
random.randint (0, 1).

* If one is encountering this concept for the first time, it may feel very counter-intuitive why access to
“randomness” or “noise” can help in the design and analysis of algorithms. The main objective of this
course is to show how randomness can be a powerful tool. We stress, and we will stress this many
times in the course, this is true even in the worst-case analysis of algorithms. That is, we will still be
operating under the assumption that our algorithm must behave well for all inputs to the problem. We
will not be using randomness to analyze the working of the algorithm on a “random input”.

» There is going to be one catch however. Our randomized algorithms will either make mistakes, or
may run for ever. However, the probability of these “bad events” will be “extremely small”, and in
fact can be made as small as we want. I stress: this small can be as small as 1 in 2199, and therefore
one shouldn’t be worried about this error. Nevertheless, it is not going to be 0.

Remark: Usually, at this point one can ask the question : “How does rand() get random bits?
What exactly is random?” These are fascinating questions, but something we will probably not
cover in this course. For us, we are going to accept the existence of random bits as an axiom.

2 Alice and Bob check for Equality

* Consider the following problem. Alice has a huge file which we are going to think of as a bit-string
x € {0,1}™. Bob also has a file y € {0,1}". They need to figure out if they have the same file,
that is, is x = y? To do so, they must communicate with each other. What is the smallest amount of
communication that will solve this problem?

 The trivial solution is : Alices send her file x to Bob who checks if x = y and then tells the answer.
This takes n bits of communication. Can one do better? It so happens that without randomness the
answer” is “No!”.

! Lecture notes by Deeparnab Chakrabarty. Last modified : 25th March, 2024
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

*More precisely, for any algorithm/protocol A that Alice and Bob decide on, if the algorithm communicates less than n bits,
then there exists some input pair (x,y) where the algorithm answers incorrectly. This is not too hard to show, but is out of the
scope of this course. But there is a whole other CS49/249 called “Communication Complexity” which answers such questions.

* Now suppose Alice and Bob can use randomness. Let us be precise in telling what this means. We
are going to assume there exists a source of random bit r1, 79, 73, . .. such that each r; is 0 or 1 with
probability 1/2 and they are mutually independent. Furthermore, this source is public and both Alice
and Bob can read it. Where can such a source be found? This relates to the remark above. For a
working example, let us say these are the parities of the digits of 7« from a certain point. They clearly
don’t satisfy what we need, but they may not be a bad proxy.

* Algorithm. Here is what Alice does:

1: procedure ALICE-EQ(x):

2 for i = 1 to k do:> k is a parameter we will set later.

3: Get n random bits r; := (rgi), e rl)) from public random source.
4 Compute b; := x - r; mod 2 = Z?:l xjrg.i) mod 2.

5: Send b := (b1, b, . .., bg) to Bob. > This is k bits of communication.

Upon receiving the bits, here is what Bob does.

1: procedure BoB-EQ(b € {0, 1}*, y):

2 for i = 1 to k do:> k is a parameter we will set later.

3: Get the same r; as Alice. > Public Randomness

4 Compute ¢; :=y - r; mod 2.

5 If all b; = c;, answer EQUAL, otherwise answer UNEQUAL.

* Analysis. Let us start with a simple observation. If x = y, then Bob will always correctly answer
EQUAL, as Z?Zl X;rj = Z}Ll y;rj for any r;’s. Note that this needs Alice and Bob to have access
to the same random bits.

But what if x # y. Then does Bob always answer UNEQUAL? No. Suppose all the r;’s were 0. Then
no matter what x and y are, the b;’s and ¢;’s will all be 0, and Bob will incorrectly answer UNEQUAL.
However, the chances of that happening are pretty slim. That is, however, not the only way Bob can
make a mistake. So, let us understand how Bob can err.

Suppose x # y. Define z := x — y, which is a non-zero vector. Note each coordinate of z is either

—1 or 0 or 1. Here is the claim which bounds the error probability.

Claim 1. Let z be any non-zero n-dimensional {—1,0,1}" vector. Let r be a random n-dimensional
vector with r; € {0, 1} with probability 1/2. Then,

1
Prjz-rmod2=0] = 5

Proof. Since z # 0, we know one of its coordinates is # 0. Without loss of generality let us assume
it is z1. Then, let’s write z - r as

n

n
Z-Tr= E Z;r; = (erl) + E Z;Y;
=2

i=1

Let X be the random variable z1r; and let Y = Z?:Q z;r;. The crucial thing to note is that X and Y
are independent random variables. We stress: even if z; and z2 may be “dependent” in that they are
set by the adversary, they are “fixed” and not random at all. The only randomness is in the r;’s, and
r; is independent of rg, ..., Iry.

Let Z = X +Y be the random variable z - r. Below, we use = 0 as a short hand of equal modulo 2.

PI‘[Z =9 O] = PI‘[Z =9 0’Y =9 O] . PI‘[Y =9 0] + PI‘[Z =92 0 ‘ Y =9 1] . PI‘[Y =9 1]
= PI‘[X =9 O‘Y =9 0] . PI‘[Y =9 0] + PI‘[X =91 | Y = 1] . PI‘[Y =9 1]
= Pr[X =0]-PrlY =0 + Pr[X=1]-(1-Pr[Y =0])

—_—— —_——
=1/2 =1/2
— 1/2,

where the last equality follows from the observation that Pr[X =5 0] = Pr[r; = 0] because z; # 0,
which implies z; € {—1, 1} implying z; =5 1. The first equality is the total law of probabilities. To
explain the second equality, note that when Y =5 0, we get Z =5 0 if and only if X =, 0, and when
Y =5 1, we get Z =5 0 if and only if X =5 1. The third equality follows from independence of X
and Y. U

The above claim shows that a single r catches inequality with probability 1/2. To get low error, we
boost by repeating. In particular, if we want an error of 27300 (which is a really, really small number),

then Alice needs to send only 300 bits.

Theorem 1. For any § > 0, Alice and Bob can solve the equality problem with error probability
< § communicating k := [lg ($)] bits.

Proof. We have already argued there is no error when x = y. When x # y, forevery 1 < ¢ < k, the

previous claim gives us Pr[b; = ¢;] = % Since all the random bits r;’s are independent, the events
& := {bi = ¢;} are mutually independent. Therefore, the probability Pr[A &] = 2% < §. This is
precisely the probability Bob says EQUAL. O

Remark: The presence of this public random bits might bother you. Perhaps you would prefer
Alice to run an algorithm using rand() function on her computer, and then send whatever she
wants to send to Bob. Bob can also run the rand() function on his computer, but they no longer
can agree with Alice’s. Can you think of an algorithm which works under this assumption? We
will cover this later in the course.

Ponder This: How many random bits does the above algorithm use from the public source?
Quite a lot, right. Can we do with fewer random bits? For example, would the following work:
Alice and Bob decide on a fixed long string s (say the parities of the digits of w). We will assume
|s| > n2 Alice then chooses a random index i € {1,2,...,n}, and then executes the above
protocol with v set 10 (S, Sit1, -+ Sitn—1)-

* Multiple Equalities: The Union Bound. Consider a generalization of the problem. Alice now has
T strings x1), ..., x(T) where each x(T) € {0,1}". Bob still has that one string y € {0,1}". They
want to know whether there exists and 1 < t < T such that x(*) = y or are they all different from y.
How much communication is needed if, say, they want to be correct with 99% probability?

At first blush, one may assume that the answer is simply O(7") since instead of sending O(log(1/9))-
bits, which is O(1) for § = 0.01, Alice sends 7" many such copies. However, it is important to note
that every such message has an error probability and error accumulates. This is what is captured by
the so-called “union bound” which is a simple and yet powerful and ubiquitous concept. Let’s spell it
out for this case.

Let B; be the event that x* = y and yet the bits b(t) = (bgt), . ,bg)) that Alice sends, for k =
[lg(1/8)] matches ¢, the bits that Bob computes. That is, B; is the event that the Equality test

between x(*) and y passes. For the above algorithm, the bad event occurs when any of the By’s
occurs. So,
T T
Prlalgoerrs] = Pr[\/ B < Pr(B;]
V. &

Union Bound

Note that we have moved from an equality to an inequality; we are using the near trivial fact the
probability an event £ occurs or an event £ occurs is at most the sum of their individual probabilities.
Oftentimes (but not always) we don’t qualitatively lose much by making this over-estimation (and
save a lot on sweat).

Since we know that Pr[B;] &~ J, we see that all we can say of the error probability of our algorithm
is that it is < 7'0. And so, if we want this to be < 0.01, we need to make 6 = 0.01/7, which in turn
means that Alice would need to send O(T log T') bits.

Ponder This: Can you actually solve this in O(T) bits?

3 Monte Carlo Algorithms

* More generally, a randomized algorithm .4 on an input I could run in some fixed, deterministic time
T 4(I), but return a solution .A(/) which could be wrong. However, the probability that the algorithm
is wrong (the probability taken over the randomness generated by the algorithm’s various calls to
rand()) is “small”. Formally, for our lectures let’s assert that

Pr[A(I) is wrong] <

W=

These are called Monte Carlo randomized algorithms.

* Let us be a bit more precise about the computational problems at hand. Most computation problems
are either decision problem (with Yes or No answers), or optimization problems (which tries to max-
imize or minimize some function). In both cases, we could ramp down the error probability pretty
rapidly by repeating. Let us elaborate for decision problems. Suppose the problem was a decision
problem, and suppose A took input Z and returned a solution YES or NO. For decision problems, the
Monte-Carlo algorithms are of two types: one with one-sided error and the other with two sided-error.

* One-sided error. The algorithm A is a Monte-Carlo algorithm with one-sided error, if for any instance
7 whose answer is YES, the algorithm answers YES with probability 1. When the instance Z has
answer NO, the algorithm may answer YES with probability < 0.1. Given such an algorithm .4 and
an instance Z imagine what happens if we repeat .4 on Z for k times each time using fresh random
coins. If 7 was an YES instance, the algorithm will return YES all the time. If Z was a NO instance,
however, the algorithm could make mistakes. But the probability that the algorithm makes a mistake
all k£ times is < 3% This suggests the following boosting algorithm: run A on the instance k times
and return YES if all k£ runs return YES, otherwise, return NO.

If 7 is a YES instance, the boosting algorithm says YES with probability 1. If Z is a NO instance, the
boosting algorithms says YES with probability < 5. Note that if k = 30, this number is < 107,

Remark: How would you ramp error down for optimization problems? Suppose that the algo-
rithm always returns a feasible solution with probability 1.

* Two-sided error. The algorithm A is a Monte-Carlo algorithm with two-sided error, if it could make
an error on both YES and NO instances. However, in either case the chance of error is < % First
notice that the above method of boosting won’t work. Rather, what works is the following: repeat for
2k + 1 times the run of A on Z, and return the majority answer. In a later lecture, we will see how the
error probability of this repeated algorithm also exponentially decays with k.

Learning Tidbits:

e Algorithm Design: “dot-product with a random vector” as a aggregation/summarizing rule. For
another use of this idea, see the “checking matrix-multiplication” problem in the problem set.

* Analysis: Use of conditional probability; Boosting, Union Bound. The use of union bound is
going to be prevalent throughout the course.

	What are Randomized Algorithms?
	Alice and Bob check for Equality
	Monte Carlo Algorithms

