
Locality Sensitive Hashing and Nearest Neighbors1

• Nearest Neighbor and Approximate Nearest Neighbor Problem. In the nearest neighbor problem
we are given a point set P which lies in a metric space (X, d). That is, P ⊆ X where X is some
ambient space with a distance function d : X ×X → R≥0 satisfying three properties: (i) d(x, x) = 0
for all x ∈ X , (ii) (symmetry) d(x, y) = d(y, x), and (iii) (triangle inequality) for any three points
x, y, z ∈ X , d(x, z) ≤ d(x, y) + d(y, z). Examples of common metric spaces are (Rm, ℓ2) where
the ambient space is all m-dimensional vectors and the distance between points is the usual Euclidean
distance. There can be many other examples; for instance, X could be the set of all strings of a
certain length, and d(s, t) could be the Hamming distance between them which indicates the number
of positions in which they differ. For now, let’s stick to the abstract notion of (X, d) satisfying the
three properties above.

The goal in the nearest neighbor problem is to preprocess P and create a data-structure so that when
queried with x ∈ X , it returns p in P that is closest to x. That is, p = argminq∈P d(q, x). There are
three parameters of interest: (a) preprocessing time, (b) space required by the data structure, and (c)
the query time.

Oftentimes, the exact nearest neighbor problem is too difficult to solve, and one is okay with an ap-
proximate solution. This is the c-approximate nearest neighbor, or simply the c-ANN problem. When
queried with a point x ∈ X , the objective is to return a point p such that d(p, x) ≤ c ·minq∈P d(q, x).
Furthermore, the algorithm is allowed to be randomized with error parameter δ, and so it can return
either ⊥ or a “far away” point, but that occurs with probability at most δ.

In this lecture, we will see a technique to solve the ANN problem based on a particular kind of hashing
called locally sensitive hashing. This is not the only application of this hashing technique, but it was
the setting in which it was discovered, and in some sense the quintessential application. These lecture
notes themselves are a sample/sketch/hash of these well2 written3 papers4. There are other techniques
for solving the ANN problem especially in low-dimensional metric spaces (ie, when X = R2 or R3

and d(·, ·) is the Euclidean distance) but that will not be the focus of this lecture.

• Approximate Near Neighbor Problem. We will be focusing on a slightly different problem called
the approximate near neighbor problem. In this problem, apart from the point set P , the approxima-
tion quality c and the failure probability δ, we are also given a parameter r. The goal is to create a
data structure NearNbr

(δ)
r,c which has the following property.

When queried with a point x ∈ X , NearNbr(δ)r,c (x) either returns a point p ∈ P or ⊥.
– If it returns p, then d(p, x) ≤ cr.

– If there exists a point q ∈ P such that d(x, q) ≤ r, then Pr[NearNbr
(δ)
r,c (x) = ⊥] ≤ δ.

1Lecture notes by Deeparnab Chakrabarty. Last modified : 30th April, 2023
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

2S Har-Peled, P Indyk, R Motwani: Approximate nearest neighbor: Towards removing the curse of dimensionality , Theory of
Computing, 2012. Journal version of Indyk-Motwani paper from STOC 1998.

3A. Z. Broder, On the resemblance and containment of documents, Proceedings. Compression and Complexity of Sequences,
1997

4M. Charikar, Similarity estimation techniques from rounding algorithms, Symposium on Theory of Computing (STOC), 2002.

1

https://theoryofcomputing.org/articles/v008a014/v008a014.pdf
https://ieeexplore.ieee.org/document/666900
https://dl.acm.org/doi/10.1145/509907.509965

In plain English, if there is a point in P which is “near” x, that is, within distance r, then with
probability≥ 1−δ, the data structure returns a point p which is within distance≤ cr. Note that it still
may return a point within ≤ cr even if there is no point in P within distance r. If we use NearNbrr,c

without the subscript δ, then the assumption is that δ = 1/2. Note that one can get NearNbr(δ)r,c using
O(log(1/δ)) independent instances of NearNbrr,c.

• One can use a binary search style idea to reduce the ANN problem to approximate near neighbor
problem. Suppose we knew parameters rmax and rmin such that for any two distinct points p, q in P ,
we have rmin ≤ d(p, q) ≤ rmax. For instance, if d(·, ·) was the Hamming distance between strings of
length m, then rmax = m and rmin = 1 satisfy the above property. Let ∆P := rmax

rmin
; this parameter is

often called the aspect ratio of the point set P . One can use O(log∆) many NearNbr
(δ)
r,c ’s to obtain

an 2c-ANN data structure. The formal statement is below.

Lemma 1. Suppose an NearNbr
(δ)
r,c -data structure can be constructed in Tr,c,δ(n) pre-processing time,

uses space Sr,c,δ(n), and answers queries in time Qr,c,δ(n). Assume these parameters are monoton-
ically non-increasing in r and n, and non-decreasing in c and δ. Then a 2c-ANN data structure can
be constructed which takes pre-processing time O(Tr,c,δ(n) · log∆), uses space O (Sr,c,δ(n) · log∆),
has query time O(Qr,c,δ(n) log log∆) with error probability O(δ log∆).

Exercise: Prove the above lemma.

Remark: The above lemma is unsatisfactory if ∆ is very large. The papera by Har-peled, Indyk,
and Motwani does show a way how to get the reduction without any dependence on ∆.

aThe statements in Corollary 2.6 and Theorem 10 have an unfortunate typographic error: the log2 n should be in
the numerator and not the denominator.

• Locality Sensitive Hashing (LSH). Given a metric space (X, d) and two parameters r, c, a family
Hr,c of functions h : X → R for some range R is an (r, c, p1, p2)-locality sensitive hash (LSH) family
has the following properties

– For any two points x, y ∈ X with d(x, y) ≤ r, Prh∈RH[h(x) = h(y)] ≥ p1

– For any two points x, y ∈ X with d(x, y) ≥ cr, Prh∈RH[h(x) = h(y)] ≤ p2

In plain English, close by points are more likely to collide and far away points are less likely to collide.
The parameter ρ = ln(1/p1)

ln(1/p2)
is of interest and it is desirable to have this as small as possible. Note that

when p1 > p2, we have ρ < 1.

• Using LSH to solve Approximate Near Neighbor Problem. We now show how to create the
NearNbrr,c data structure using access to an (r, c, p1, p2)-LSH family. As you will see, the prepro-
cessing times, space, and query times will all depend on the parameter ρ.

The idea is quite simple. One first concatenates such hash-functions to amplify the probabilities;
that is close by points get hashed together with probability ≥ pk1 while far away points get hashed
together with probability ≤ pk2 . If p1/p2 > 1, then this ratio is amplified. Next, one samples L many
concatenated hash functions g1, . . . , gL, and use them to construct L different hash tables T1 to TL,

2

https://theoryofcomputing.org/articles/v008a014/v008a014.pdf
https://theoryofcomputing.org/articles/v008a014/v008a014.pdf

and each point p ∈ P is stored in each of these tables. When queried with a point x, one “collects”
the points from the tables by picking the points in the gi(x)th location of table Ti, stopping once 16L
points have been collected. One searches for a point in these which is within ≤ cr distance. If none
found, ⊥ is returned. The k and L are chosen such that the probability of error is ≤ 1/2.

• Pre-processing. Throughout, we use n to denote |P |, the size of the data set. Note that X itself could
be infinite. Nevertheless, we do assume that every point x ∈ X can be represented in O(1)-word of
memory and arithmetic is possible in O(1) time.

– Given the family H, construct the family G of hash functions g : X → Rk where we sample g
by first sampling, with replacement, k independent hi’s fromH, and defining

∀x ∈ X : g(x) := (h1(x), h2(x), . . . , hk(x))

The parameter k will be chosen as k :=
⌈

lnn
ln(1/p2)

⌉
. We will soon see the reason of this choice,

and for now the reader can keep this k as a parameter.

– We now choose L independent gj’s, with replacement, and initialize L different hash-tables
T1, . . . , TL each with range [n]. We sample ȷ from a universal hash family of functions with
domain Rk and range [n]. For every point p ∈ P , for every 1 ≤ j ≤ L, we compute gj(p) and
add p in the ȷ(gj(p))th “bucket” (list) at Tj .
The parameter L will be chosen5 as L :=

⌈
(1/p1)

k
⌉
≤ ⌈nρ/p1⌉. Once again, the reason for this

choice will be clear. This completes the preprocessing step.

For every point p, we compute L different gj(p)’s, and for each gj(p) we compute k different hi(p)’s.
Assuming that the h-computations (and ȷ-computations) take O(1) time, the pre-processing time is
O(nkL). Using the parameters that we will set, the preprocessing time is

Tr,c,0.5(n) = O

(
n1+ρ · lnn

p1 ln(1/p2)

)
= O(n1+ρ lnn) if p1 and p2 are constants

The space is the dominated by the size of the buckets. Each point p is placed in L buckets, and
therefore, the space required to save the points is O(nL) assuming the points in P can be stored in
O(1) words of memory. This is also the size of the hash tables. The space required to store the various
hash functions is O(kL) assuming each h ∈ H can be stored in O(1) words of memory. When p1 is
reasonable, k ≪ n, and therefore the total space is

Sr,c,0.5(n) = O

(
n1+ρ · 1

p1

)
= O(n1+ρ) if p1 is a constant

• Query. Upon a query x ∈ X , we do the following.

– (Computation) Compute gj(x) for all 1 ≤ j ≤ L. Initialize B ← ∅.
– (Point collection) Starting with j = 1, keep adding points from ȷ(gj(x))th bucket of Tj into B,

stopping once |B| becomes 16L.

– (Selection) If there exists a point q ∈ B with d(x, q) ≤ cr, return q. Otherwise return ⊥.

5if we ignored ceilings, L would precisely be nρ.

3

The query time is O(kL) has function computations, ≤ 16L point collection and distance computa-
tions. Therefore, using the k and L values, the total time complexity of the query process is

Qr,c,0.5(n) = O

(
nρ · lnn

p1

)
= O(nρ lnn) if p1 is a constant

• Correctness. It should be clear that when the query algorithm called with x ∈ X returns a q then,
by design, d(q, x) ≤ cr. We need to prove that if there exists p ∈ P such that d(p, x) ≤ r, then the
Pr[return ⊥] ≤ 0.5. To see this, note that there are two bad events.

– B1. The point p is never hashed with x. More precisely, for all 1 ≤ j ≤ L, gj(p) ̸= gj(x).

– B2. Too many far-away points are hashed with x. To make this precise, let F := {p ∈ P :
d(p, x) > cr}. This event occurs if

∑L
j=1 fj > 16L where fj are the points in F that are in the

same location of Tj as where x lands.

Observe that Pr[⊥] ≤ Pr[B1∪B2]. To see this, suppose neither bad events occur. Then, ¬B1 implies
there exists j such that gj(p) = gj(x), and therefore, at the end of the point collection, either p ∈ B
or |B| = 16L. ¬B2 implies that if |B| = 16L, then some point in B must be ≤ cr distance away,
since the number of far away points that could end up in B is ≤

∑L
j=1 fj < 16L. And so, we would

be returning that point instead of ⊥. It’s important to note that we are not claiming p ∈ B (otherwise,
we would have found a point within distance r from x).

• We bound each Pr[B1] and Pr[B2] individually and this analysis explains the choice of k and L. As
argued earlier, since d(x, p) ≤ r, for each individual gj , Pr[gj(x) = gj(p)] ≥ pk1 . Therefore,

Pr[B1] ≤ Pr[∀1 ≤ j ≤ L : gj(x) ̸= gj(p)] ≤
(
1− pk1

)L
≤ e−Lpk1

We would want this to be ≤ 1/e, and thus Lpk1 ≥ 1 explaining our choice of L (in terms of k).

To argue about B2, let’s fix a point q ∈ F and a j between 1 and L. Let Xq,j be the indicator that q
lies in ȷ(gj(x))th position of Tj . Note that B2 implies that

∑
q∈F

∑L
j=1Xq,j ≥ 16L. Next note

Pr[Xq,j = 1] = Pr[ȷ(gj(q)) = ȷ(gj(x))] < Pr[gj(q) = gj(x)] +
1

n
≤ pk2 +

1

n

where the 1/n follows from the UHF-ness of ȷ, and, since d(q, x) > cr, Pr[gj(q) = gj(x)] ≤ pk2 .

Therefore,

Exp[
∑
q∈F

L∑
j=1

Xq,j] ≤ |F | · L ·
(
pk2 +

1

n

)
< L+ Lnpk2

where we have used the trivial inequality |F | < n. Now we see the choice of k: we want npk2 ≤ 1
which is what k = ⌈lnn/ ln(1/p2)⌉ gives us. With this, we get

Exp[
∑
q∈F

L∑
j=1

Xq,j] ≤ 2L ⇒ Pr[B2] = Pr[
∑
q∈F

L∑
j=1

Xq,j ≥ 16L] <
1

8

by Markov’s inequality.

Thus, Pr[⊥] ≤ Pr[B1] +Pr[B2] ≤ 1
e +

1
8 < 0.5.

4

In the remainder of these notes we look at three LSH families for certain metric spaces (X, d). In
fact, all three constructions are stronger than what is needed; we show construction of a family H of
functions such that for any two points

x, y ∈ X, Pr
h∈H

[h(x) = h(y)] = 1− d(x, y)

D
(*)

where D = maxx,y∈X d(x, y).

Exercise: Show that any family of functions satisfying (*) is an (r, c)-LSH family for any r and c
satisfying rc < D, with ρ ≤ 1

c .

• LSH for Hamming Metric. Suppose X = Σm where Σ is an alphabet and X is the set of all m-
length strings with characters from this alphabet. For x, y ∈ X , let dHam(x, y) denote the Hamming
Distance indicating the number of coordinates at which x and y differ. That is,

dHam(x, y) :=
∣∣∣{i ∈ [m] : xi ̸= yi}

∣∣∣
The LSH family for this (X, dHam) is rather simple. It’s simply

H := {hi : X → Σ | 1 ≤ i ≤ m}, ∀i ∈ [m], hi(x) = xi

That is H contains m function where the ith function simply outputs the ith character of the string.
Note that this family satisfies (*) with D = m.

As a corollary one gets

Theorem 1 (c-ANN for Hamming metrics). Given a subset P ⊆ Σm with |P | = n for any
parameter c > 1, there exists a randomized data-structure with space Õ(n1+ 1

c) which, when
given a query string x, can return an O(c)-approximately nearest neighbor in P in time Õ(n

1
c).

The Õ() notation hides logarithmic factors. By querying every point x ∈ P (to be fair, we need to
delete x itself from P , but all that can be done), in O(n1+1/c)-time we can get an O(c)-approximation
to the closest pair of strings. This is, at the time of writing and to the best of my knowledge, still the
fastest time to get any constant approximation. In particular, to obtain an O(1) approximation to the
closest pair of strings in Õ(n) time is still an open question!

There are many follow up results on LSH families for (Rm, ℓ1) and (Rm, ℓ2) metrics. At some point
we will add pointers to these in this lecture notes, but for now we point to a recent (at least at the time
of writing) survey talk by Moses Charikar.

• LSH for Jaccard Distance. We now state an LSH family which pre-dates the definition of LSH,
and in fact possibly inspired the above definition. This is a hashing family due to Andrei Broder from
a paper which was interested in trying to quickly figure out similarities between documents, which
were (are?) thought of as a set of objects where each object is a consecutive string of words.

Abstractly, let U be a universe of n elements. The set X is the power set of U , that is, the collection
of all subsets of U . Given A,B ⊆ U , we define the Jaccard similarity between A and B, and the
Jaccard distance

JS(A,B) :=
|A ∩B|
|A ∪B|

and dJacc(A,B) := 1− JS(A,B)

5

https://www.youtube.com/watch?v=TjoBxHyWtGY

Exercise: Y Prove that dJacc satisfies triangle inequality. Try proving this before reading ahead.
You will appreicate the “book proof” of this fact that’s coming up.

• The Family. Suppose π is a permutation of U picked uniformly at random from all permutations. We
imagine π : U → [n] where {π(x) : x ∈ U} forms a random permutation of {1, 2, . . . , n}. Given a
subset A ⊆ U ,define

hπ(A) := min
a∈A

π(a)

The following observation shows that this family satisfies (*). This hashing scheme is called MinHash
in the field.

Claim 1. For any two sets A and B, Prπ[hπ(A) = hπ(B)] = JS(A,B) = 1− dJacc(A,B).

Proof. This is simply because π restricted to any fixed set is a distribution over random permutations
of that set, and that every element of a permutation is equally likely to be the minimum. hπ(A) =
hπ(B) occurs if and only if the first element of the random permutation of A ∪B lies in A ∩B. And
this probability is precisely the ratio of the sizes of these two sets.

Indeed, the above claim gives a simple proof that dJacc(A,B) satisfies triangle inequality. Let 1π(A,B)
be the indicator variable if hπ(A) ̸= hπ(B); thus, dJacc(A,B) is precisely Expπ[1π(A,B)]. Now
since these indicators are 0, 1 random variables, it’s next to trivial to argue for any π,

1π(A,B) ≤ 1π(A,C) + 1π(C,B)

Indeed, the only way this can be violated is if the LHS is 1 and both RHS are 0. But both RHS are 0
implues hπ(A) = hπ(C) = hπ(B) which would imply the LHS is 0 too. Thus, the above inequality
holds and the triangle inequality of dJacc follows by taking expectations on both sides.

• Min-Wise Independent Family of Functions. The big issue with the above family is that π needs to
be a permutation picked uniformly at random. The size of storing hπ is therefore O(n log n) which
is undesirable. Motivated by this, Broder, Charikar, Frieze, and Mitzenmacher6 defined the notion of
ε-approximate min-wise independent family of functions.

Definition 1. A familyH of functions h : [n]→ [n] is said to be ε-approximate min-wise independent
if for any X ⊆ [n] and for any x ∈ X ,

Pr
h∈H

[h(x) = min
y∈X

h(y)] ∈ (1± ε) · 1

|X|

Exercise: Prove that for any two sets A and B, if we define h(A) := mina∈H h(a), then
Prh∈H [h(A) = h(B)] ∈ JS(A,B)± ε.

6Andrei Z. Broder, Moses Charikar, Alan M. Frieze, Michael Mitzenmacher: Min-Wise Independent Permutations. J. Comput.
Syst. Sci. 60(3): 630-659 (2000)

6

Broder et al. showed that there exist ε-approximate min-wise independent families of size O(n2/ε2).
Unfortunately, this is only an “existence” result shown using the probabilistic method. Indyk7 showed
that in fact a ℓ-wise independent family of hash-functions satisfies the above condition (but only for
smallish sets X with |X| ≤ εn) when ℓ ≈ log(1/ε).

• LSH for Angular Distance. The final distance we look at is called angular distance. Once again,
assume our data is m-dimensional vectors. We use the angle between these vectors as our notion of
similarity/distance. In particular, assume by scaling that all the vectors vi’s lie on the unit sphere, that
is, ∥vi∥2 = 1. We define

dang(vi,vj) :=
∠vi,vj

π

where the angle is measured in radians.

The RHS above is closely related to the dot product between the two vectors. Indeed, since the vectors
are unit vectors dang(vi,vj) = cos−1(vi · vj). One may wonder if choosing 1− vi · vj may not be a
better choice for a distance measure...but this doesn’t even satisfy triangle inequality.

Exercise: Come up with three unit vectors vi,vj ,vk such that (1 − vi · vj) > (1 − vi · vk) +
(1− vk · vj).

Hint: ∥vi − vj∥22 = ∥vi∥22+∥vj∥22−2vi ·vj = 2(1−vi ·vj) since the vectors are unit-vectors.

Do the angles satisfy triangle inequality? It’s not obvious. See here for an argument on Math Stack-
exchange. What is coming up is another proof a la Jaccard distance in the previous bullet point.

• The Family. Let r be a random unit vector in m dimensions. To define this precisely, we need to recall
normal/Gaussian random variables. A standard Gaussian random variable Z ∼ N(0, 1) with mean 0
and standard deviation 0 has a probability distribution function of f(z) = 1√

2π
e−z2/2. Construct r by

choosing each ri independently as a standard Gaussian. Note that for any point x = (x1, . . . , xm),
the

Pr[r = x] =
1

(2π)m/2
e−∥x∥22/2

and thus is equiprobable if ∥x∥ = ∥y∥. Therefore, scaling r by ∥r∥ gives a point uniform on the unit
sphere.

Given r, we define the following hash function.

hr(v) := sgn(vi · r)

where sgn(x) = 1 if x ≥ 0 and −1 otherwise.

The following observation shows that this family satisfies (*). This hashing scheme is called SimHash
in the field. As in the case of MinHash, the claim below proves that dang satisfies triangle inequality.

Claim 2. For any two unit vectors v and w, Prr[hr(v) = hr(w)] = 1− dang(v,w)

7Piotr Indyk, A Small Approximately Min-Wise Independent Family of Hash Functions, Journal of Algorithms, 2000

7

https://math.stackexchange.com/questions/1924742/prove-the-triangle-inequality-on-the-sphere-s2-in-mathbbr3/1925049

Proof. Fix the plane spanned by v and w. Let r′ be the projection of r on to this plane which is
dilated so as to lie on the unit (great) circle on which v and w lie. Note, sgn(v, r) = sgn(v, r′)
and sgn(w, r) = sgn(w, r′). Also note that due to the fact that r was uniform on the sphere, r′ is
uniformly distributed on the circumference of the great circle. Therefore, the probability sgn(v, r′) ̸=
sgn(w, r′) is the probability that r′ lies in the minor arc between v and w (or −v and −w). This is
precisely ∠vi,vj

π proving the claim.

As in the case of MinHash, it takes space to store m Gaussian random variables up to high precision.
Indeed, as described, the family H of functions is infinite in size. It can be shown, however, if there
are only n vectors, then the hash functions can be chosen using only O(log2 n) bits, that is, the
family H contains only 2O(log2 n) different r’s. This is connected to deterministic algorithms for the
Johnson-Lindenstrauss lemma, which is the subject of the next lecture, and is connected to the study
of psuedorandom generators and is beyond the scope of today’s lecture.

8

