Dimension Reduction: Johnson-Lindenstrauss Lemma'

* Dimension Reduction. In many applications, data entries are vectors in high dimension. Concretely,
it could be vectors vy, ..., Vv, where each v; € R?, and d can be of the same order as n. The term
dimension reduction refers to a mapping/embedding of these vectors to a lower dimensional space
such that certain properties of the data-set are preserved. In this lecture, the property we will focus on
is the Euclidean distance between the points. In particular, we search for a map which takes

Vi € RY d(v;) € R* (1

such that
Vi<i<j<mn: |[®(v;)— <I>(vj)H2 e(lte)|vi— ij2 2)

We would like to know how small a k£ can we get away with.

Note that a “low dimensional” intuition doesn’t get us far. If we ask for dimension reduction from 2
to 1, or 3 to 2, the situation seems hopeless. The point is that the k£ would still be growing with n but
would be much smaller.

* The Johnson-Lindenstrauss Lemma. One of the most influential mathematical theorems in com-
puter science is the Johnson-Lindenstrauss lemma. Indeed, it is often stated and used without even
citing the paper? of Johnson and Lindenstrauss. That’s the mark of a general result! Also, it is called
a lemma for it is Lemma 1 in their paper, and they use it to prove a theorem about extensions of func-
tions in metric spaces. The JL-lemma says that dimension reduction satisfying (1) and (2) is possible

with k = O (Clgogg”>, and furthermore, the map ®() is a linear map, that is, ®(x) = A - x for some

k x n matrix A. And in fact a random matrix works with high probability.

Theorem 1 (JL Lemma.). Fix n vectors vy, ..., v, in R% Let k = 618# for some fixed constant
C. Let A be a random k x d matrix where each A;; ~ ﬁ - N(0,1) is drawn from a normal

distribution with mean 0 and standard deviation 1. Then, with probability 1 — %,

Vi<i,j<n, [Avi—Avjl, € (l=xe)|vi—vjl,

¢ Gaussian Random Variables. Let us state some facts about Gaussian random variables that we will
be needing in the proof. First recall that the probability distribution function of Z ~ N(0, 1) is

We will need two facts.

Fact 1. If 7y, ..., Z; are t independent Gaussians where each Z; ~ N (0, 01-2), then Z := Zle a; Z;
is distributed as N(0, o%) where 0 = >'_, aZo?.
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The second fact we will need is about the sum of squares of a normal random variable. Let Z;, ..., Zj
iid Gaussians ~ N (0, 1). Then, the random variable X = Zle Z? is said to be distributed using the
x2-distribution with k-degrees of freedom.

It’s easy to see
k
Exp[X] = Exp[Z?] = k
i=1

and a little more work shows that

Var[X]| = 2k
The “rule of thumb” concentration® then suggests that Pr[|X — k| > ck] < ¢ =% since ek =
O(eVk) standard deviations. Indeed, that is a fact. The following states that in a general form (and
follows by scaling)

Fact 2. If Z1, ..., 7, are t independent Gaussians where each Z; ~ N(0, 0?), then X = Zle 7Z?
satisfies Exp[X] = ko? and

Pr[X ¢ (1+¢)-Exp[X]] < 2¢ /8

* Random Linear Maps. The proof of the JL. lemma follows almost immediately from the above two
facts. Indeed, what one can show is this:

vx € R, Pr ||| Axlly ¢ (1&e) - |Ix]; | < 2e7/2 3)

Recall, A is arandom k x d matrix where each A;; ~ ﬁZij for Z;; ~ N(0,1).
Fix a row t with 1 < ¢ < k of A and consider the dot product Z; := (A, x). This is simply
Z;-lzl x;Ay; and forms the tth entry of Ax. By Fact 1, we see that Z; ~ N(0, 1 |x|3). Therefore,
we get

2
HXH2)
k

k
| Ax]|3 = Z Z? where each Z; ~ N(0,
t=1

2
1]l

By Fact 2, we get that Exp[||Ax|3] = S5, P2 = Ix/|3, and

—e?
Pr [ Ax[3 ¢ (1 %¢) - x|} ] < 2078

(3) follows by noting that Pr 4 [HAXH2 ¢(1+e)- HXM < Pr [\\Axug ¢ (1+2) qug}

* Finishing up with union bound. Now one considers the collection H := {(v;—v;) : 1 <i < j <n}
of (;) vectors and applies union bound on H. More precisely,

Prisuc f : [Aul, ¢ (1) ul) <2(} ) o2

If k = 6};;”, then the above RHS is < 1/n. Therefore, with probability > 1 — 1/n, we get that for
every 1 <i < j <, [|[A(vi —Vj)|, = [|[Avi — Avj|, € (1 £¢)|[v; — vj]|,, proving Theorem 1.

*If X is a sum of “nice” independent random variables, then Pr[|X — Exp[X]| > cox] < ¢=©*) Thisisa vague statement

since “nice” is not defined, and hence only a rule of thumb. Read the first three paras of these beautiful notes.
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