
Dimension Reduction: Johnson-Lindenstrauss Lemma1

• Dimension Reduction. In many applications, data entries are vectors in high dimension. Concretely,
it could be vectors v1, . . . ,vn where each vi ∈ Rd, and d can be of the same order as n. The term
dimension reduction refers to a mapping/embedding of these vectors to a lower dimensional space
such that certain properties of the data-set are preserved. In this lecture, the property we will focus on
is the Euclidean distance between the points. In particular, we search for a map which takes

vi ∈ Rd 7→ Φ(vi) ∈ Rk (1)

such that
∀1 ≤ i < j ≤ n : ‖Φ(vi)− Φ(vj)‖2 ∈ (1± ε) · ‖vi − vj‖2 (2)

We would like to know how small a k can we get away with.

Note that a “low dimensional” intuition doesn’t get us far. If we ask for dimension reduction from 2
to 1, or 3 to 2, the situation seems hopeless. The point is that the k would still be growing with n but
would be much smaller.

• The Johnson-Lindenstrauss Lemma. One of the most influential mathematical theorems in com-
puter science is the Johnson-Lindenstrauss lemma. Indeed, it is often stated and used without even
citing the paper2 of Johnson and Lindenstrauss. That’s the mark of a general result! Also, it is called
a lemma for it is Lemma 1 in their paper, and they use it to prove a theorem about extensions of func-
tions in metric spaces. The JL-lemma says that dimension reduction satisfying (1) and (2) is possible
with k = O

(
C logn

ε2

)
, and furthermore, the map Φ() is a linear map, that is, Φ(x) = A · x for some

k × n matrix A. And in fact a random matrix works with high probability.

Theorem 1 (JL Lemma.). Fix n vectors v1, . . . ,vn in Rd. Let k = 6 lnn
ε2 for some fixed constant

C. Let A be a random k × d matrix where each Aij ∼ 1√
k
· N(0, 1) is drawn from a normal

distribution with mean 0 and standard deviation 1. Then, with probability 1− 1
n ,

∀1 ≤ i, j ≤ n, ‖Avi −Avj‖2 ∈ (1± ε) ‖vi − vj‖2

• Gaussian Random Variables. Let us state some facts about Gaussian random variables that we will
be needing in the proof. First recall that the probability distribution function of Z ∼ N(0, 1) is

p(z) =
1√
2π
e−z

2/2

We will need two facts.

Fact 1. If Z1, . . . , Zt are t independent Gaussians where each Zi ∼ N(0, σ2i ), then Z :=
∑t

i=1 aiZi

is distributed as N(0, σ2) where σ2 =
∑t

i=1 a
2
iσ

2
i .
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2W. B. Johnson and J. Lindenstrauss, Extensions of Lipschitz Mappings into a Hilbert Space.
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The second fact we will need is about the sum of squares of a normal random variable. Let Z1, . . . , Zk

iid Gaussians ∼ N(0, 1). Then, the random variable X =
∑k

t=1 Z
2
i is said to be distributed using the

χ2-distribution with k-degrees of freedom.

It’s easy to see

Exp[X] =
k∑

i=1

Exp[Z2
i ] = k

and a little more work shows that
Var[X] = 2k

The “rule of thumb” concentration3 then suggests that Pr[|X − k| ≥ εk] ≤ e−Cε2k since εk =
O(ε
√
k) standard deviations. Indeed, that is a fact. The following states that in a general form (and

follows by scaling)

Fact 2. If Z1, . . . , Zk are t independent Gaussians where each Zi ∼ N(0, σ2), then X =
∑k

t=1 Z
2
t

satisfies Exp[X] = kσ2 and

Pr[X /∈ (1± ε) ·Exp[X]] ≤ 2e−ε
2k/8

• Random Linear Maps. The proof of the JL lemma follows almost immediately from the above two
facts. Indeed, what one can show is this:

∀x ∈ Rd, Pr
A

[
‖Ax‖2 /∈ (1± ε) · ‖x‖2

]
≤ 2e−ε

2k/2 (3)

Recall, A is a random k × d matrix where each Aij ∼ 1√
k
Zij for Zij ∼ N(0, 1).

Fix a row t with 1 ≤ t ≤ k of A and consider the dot product Zt := 〈At,x〉. This is simply∑d
j=1 xjAtj and forms the tth entry of Ax. By Fact 1, we see that Zt ∼ N(0, 1k ‖x‖

2
2). Therefore,

we get

‖Ax‖22 =

k∑
t=1

Z2
i where each Zi ∼ N(0,

‖x‖22
k

)

By Fact 2, we get that Exp[‖Ax‖22] =
∑k

t=1
‖x‖22
k = ‖x‖22, and

Pr
[
‖Ax‖22 /∈ (1± ε) · ‖x‖22

]
≤ 2e−ε

2k/8

(3) follows by noting that PrA

[
‖Ax‖2 /∈ (1± ε) · ‖x‖2

]
≤ Pr

[
‖Ax‖22 /∈ (1± 2ε) · ‖x‖22

]
• Finishing up with union bound. Now one considers the collectionH := {(vi−vj) : 1 ≤ i < j ≤ n}

of
(
n
2

)
vectors and applies union bound on H . More precisely,

Pr[∃u ∈ H : ‖Au‖2 /∈ (1± ε) ‖u‖2] ≤ 2

(
n

2

)
· e−ε2k/2

If k = 6 lnn
ε2 , then the above RHS is ≤ 1/n. Therefore, with probability ≥ 1 − 1/n, we get that for

every 1 ≤ i < j ≤ n, ‖A(vi − vj)‖2 = ‖Avi −Avj‖2 ∈ (1± ε) ‖vi − vj‖2, proving Theorem 1.

3If X is a sum of “nice” independent random variables, then Pr[|X −Exp[X]| ≥ cσX ] ≤ e−Θ(c2). This is a vague statement
since “nice” is not defined, and hence only a rule of thumb. Read the first three paras of these beautiful notes.
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