A Lecture on Derandomization!

* Consider the following problem MAXCUT. The input is an undirected graph G = (V, E'). The output
is a subset S C V. The objective is to maximize |0(S)|, where

J9(S) = {e € E : ehasoneendpoint in S and one in V' \ S}.

We will use the following notation for the rest of lecture:

— opt.; will be the size of a maximum cut on G, i.e. opt; = maxgcy |9(95)].
—m=|E
=V

, the number of edges of G.>

, the number of vertices of (G, and we let the vertices be 1, ..., n.

Finding opt; is known to be NP-hard, so we don’t expect a polynomial time algorithm for MAXCUT.
But we could hope for an efficient a-approximation algorithm, i.e. one which yields a cut .S with
()| = a - optg

We will begin with a randomized 1/2-approximation algorithm for MAXCUT, i.e. a randomized
algorithm producing an S which satisfies E[|0(S)|] > « - opt,. We will then “derandomize” this
algorithm using two ideas — the method of conditional expectations and the method of small
spaces — to obtain two different deterministic 1/2-approximation algorithms for MAXCUT.

* Randomized 1/2-approximation for MAXCUT. The algorithm is simple:

Algorithm A (Randomized 1/2-approximation).

- Get a vector 77 = (r1,72, ...,7) € {0,1}" of n independent random bits.

— Include vertex 7 in S exactly if r; = 1.

To prove this satisfies Exp[|0S]|] > %-optG, it suffices, by the note above, to show Expl[|0S|] > %m
In fact,

Claim 1. Exp[|0S|] = - m.

Proof. Expjcio1yn[|0S(F)] =2 cpPrle € 0S] =3 jep Prlri # rj] =m - 3 D

Thus we really have a randomized 1/2-approximation algorithm.

Observe that since Expycyg13-[|0S(7)] is a weighted average of [9.S(7)| over the choices of 7,
we must have some 7 with [0S5(7)| > . One way to “derandomize” would be to systematically
go through all 2" possibilities for 7 until we find it. This is a deterministic algorithm for 1/2-

approximation, but exponential time... Let’s do better.

Lecture notes by Matthew Ellison, with minor modifications by Deeparnab Chakrabarty. Last modified : 29th May, 2023
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

Note that opt, < m, with equality exactly when G is bipartite.

» Method of Conditional Expectations® We will first derandomize Algorithm A using the method
of conditional expectations. Let A be a random variable denoting the size of |9(S)| resulting from
Algorithm A. We proved Exp[A] = 7 above, and consider expanding this identity as follows:

= Pr[r; = 0] - Exp[A|r; = 0] + Pr[r; = 1] - Exp[A|r = 1].

Therefore m /2 is a weighted average of Exp[A|r; = 0] and Exp[A|r; = 1], and so one must be
> m/2. Suppose we had Exp[A|r; = 1] > m/2. This means there is a good approximate cut with
r1 = 1, and we could expand again!

m/2 < Exp[A|r1 = 1]
= Pr[ry = 0] - Exp[A|r1 = 1,79 = 0] + Pr[ro = 1] - Exp[A|r1 = 1,79 = 1]
We’d then know one of Exp[A|r; = 1,72 = 0] and Exp[A|r; = 1,70 = 1] was > m/2, say
Expl[A|r; = 1,75 = 0]. This would mean there is a good approximate cut with r; = 1,75 = 0!

There’s nothing stopping us from continuing this process until we find something like
Exp[Alri = 1,12 =0,...,r, = 1] > m/2.
At this point, though, all the randomness is gone, and we’d conclude that choosing S according to

these /s gives a cut with size m/2.

In summary, if we were able to quickly compute these conditional expectations to find a good choice
of r; at each step, we would have a deterministic algorithm to find a 1/2-approximate max cut — like
cutting a beam through the search tree of the 2"-time algorithm mentioned above.

* How can we compute these conditional expectations? Suppose we’re considering Exp[A|r; =
1,79 = 0,...,7 = 1]. We can split the vertices of G into three groups: the one’s already assigned to
the cut (call that set R), the one’s already assigned not to the cut (—R), and the rest (X). Certainly
we’re going to get all the edges between R and —R, let E(R : —~R) be that count. The other edges
we might include are those between R and X, between —R and X, and within X*. One can check
that that the chance of any one of these other edges ending up in the cut is 1/2, and so by linearity of
expectation we have

Exp[A|..] = E(R: -R) + % [E(R:X)+E(-R: X))+ E(X:X).

Using this, we arrive at the following derandomized 1/2-approximation algorithm for MAXCUT.
Algorithm B (1 /2-approximation, via Conditional Expectations).
- R+ 0,-R<+ 0

— forz =1ton:
+ if (#edges ¢ to R)< (#edges ¢ to ~R)

3Sometimes called the Method of Conditional Probabilities.
*“Ignoring loops!

- R+ R+ {i}
* else
- =R+ -R+ {i}
— return R

The cut produced by Algorithm B will be guaranteed to have > m/2 edges by our work above, and
Algorithm B may be made to run in O(m) time since it only needs to touch every edge once.

* Method of Small Probablity Spaces. Next we will look at a different way to derandomize Algorithm
A using the method of small spaces. The idea is that we will deterministically search through possibil-
ities for 7 in Algorithm 1, but only a small subset H of them.® In particular, we’d like an H € {0, 1}"
satisfying

a. |H| < 2™ (we really want polynomial in n)

b. Expje, y[|0S(P)|] = m/2.
If we had such an H we could deterministically test all ¥ € H and (by 1) it wouldn’t take too long
and (by 2) we would be guaranteed to find a cut of size > m/2.

How can we find such a set H? The key observation is that we would like to restrict attention to 7
such that pairs of vertices (i, j) joined by an edge are unlikely to have r; = r;, in turn making it likely
edge (i, 7) is in the cut. This sounds like a job for hashing.

Let H be a UHF of h : [n] — {0,1}. We will use the Carter-Wegman family from before as an
example:

— Pick p prime in [n, 2n].

- H={hgp: ac{l,...,p—1},b€{0,....p — 1}}, where

hap(z) = ((az + b) mod p) mod 2.

Note that |H| = p(p — 1) < p? < 4n?, and that, by the properties of a UHF, Pr,_[h(7) = h(j)] <
1/2.

But this means that if we define our H as
H = {(h(1), h(2), ... h(n)) : h € T},

we have |H| = O(n?), checking property 1, and also Pryc[r; # ;] > 1/2, checking property 2 by
linearity of expectation. Thus we obtain our second derandomized version of Algorithm A:

Algorithm C (1/2-approximation, via Small Spaces).

— Define H as above, using the Carter-Wegman family (and n the number of vertices in the input
graph).
- Run through 7 € H until we find one yielding an S with |0.S| > m/2, which we return.

3The letter H is to foreshadow hashing.

¢ Final Notes

— Algorithm B is fast, O(m), time but not (obviously at least) parallelizable. Algorithm C' is
parallelizable, but not so fast. Is to possible to find a deterministic algorithm which is both fast
and parallelizable?

— BPP denotes the class of problems with “bounded-error probabilistic polynomial time” algo-
rithms (see https://en.wikipedia.org/wiki/BPP_ (complexity) for more de-
tails). It is conjectured that P=BPP, which means that any problem with a “bounded-error
probabilistic polynomial time” solution also has a polynomial time deterministic solution. For
MAXCUT, for example, Algorithm A shows 1/2-approximation of MAXCUT is in BPP and
Algorithms B and C show it’s in P. Many problems in BPP are still waiting on polynomial deter-
ministic algorithms, such as “polynomial identity testing,” the problem of determining whether
a polynomial is identically equal to the zero polynomial.

https://en.wikipedia.org/wiki/BPP_(complexity)

