
A Lecture on Derandomization1

• Consider the following problem MAXCUT. The input is an undirected graphG = (V,E). The output
is a subset S ⊆ V . The objective is to maximize |∂(S)|, where

∂(S) = {e ∈ E : e has one endpoint in S and one in V \ S} .

We will use the following notation for the rest of lecture:

– optG will be the size of a maximum cut on G, i.e. optG = maxS⊆V |∂(S)|.
– m = |E|, the number of edges of G.2

– n = |V |, the number of vertices of G, and we let the vertices be 1, ..., n.

Finding optG is known to be NP-hard, so we don’t expect a polynomial time algorithm for MAXCUT.
But we could hope for an efficient α-approximation algorithm, i.e. one which yields a cut S with
|∂(S)| ≥ α · optG.

We will begin with a randomized 1/2-approximation algorithm for MAXCUT, i.e. a randomized
algorithm producing an S which satisfies E[|∂(S)|] ≥ α · optG. We will then “derandomize” this
algorithm using two ideas — the method of conditional expectations and the method of small
spaces — to obtain two different deterministic 1/2-approximation algorithms for MAXCUT.

• Randomized 1/2-approximation for MAXCUT. The algorithm is simple:

Algorithm A (Randomized 1/2-approximation).

– Get a vector ~r = (r1, r2, ..., rn) ∈ {0, 1}n of n independent random bits.

– Include vertex i in S exactly if ri = 1.

To prove this satisfies Exp[|∂S|] ≥ 1
2 ·optG, it suffices, by the note above, to show Exp[|∂S|] ≥ 1

2 ·m.

In fact,

Claim 1. Exp[|∂S|] = 1
2 ·m.

Proof. Exp~r∈{0,1}n [|∂S(~r)] =
∑

e∈E Pr[e ∈ ∂S] =
∑

(i,j)∈E Pr[ri 6= rj] = m · 12 .

Thus we really have a randomized 1/2-approximation algorithm.

Observe that since Exp~r∈{0,1}n [|∂S(~r)] is a weighted average of |∂S(~r)| over the choices of ~r,
we must have some ~r with |∂S(~r)| ≥ m

2 . One way to “derandomize” would be to systematically
go through all 2n possibilities for ~r until we find it. This is a deterministic algorithm for 1/2-
approximation, but exponential time... Let’s do better.

1Lecture notes by Matthew Ellison, with minor modifications by Deeparnab Chakrabarty. Last modified : 29th May, 2023
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

2Note that optG ≤ m, with equality exactly when G is bipartite.

1

• Method of Conditional Expectations3 We will first derandomize Algorithm A using the method
of conditional expectations. Let A be a random variable denoting the size of |∂(S)| resulting from
Algorithm A. We proved Exp[A] = m

2 above, and consider expanding this identity as follows:

m

2
= Exp[A]

= Pr[r1 = 0] ·Exp[A|r1 = 0] + Pr[r1 = 1] ·Exp[A|r1 = 1].

Therefore m/2 is a weighted average of Exp[A|r1 = 0] and Exp[A|r1 = 1], and so one must be
≥ m/2. Suppose we had Exp[A|r1 = 1] ≥ m/2. This means there is a good approximate cut with
r1 = 1, and we could expand again!

m/2 ≤ Exp[A|r1 = 1]

= Pr[r2 = 0] ·Exp[A|r1 = 1, r2 = 0] + Pr[r2 = 1] ·Exp[A|r1 = 1, r2 = 1]

We’d then know one of Exp[A|r1 = 1, r2 = 0] and Exp[A|r1 = 1, r2 = 1] was ≥ m/2, say
Exp[A|r1 = 1, r2 = 0]. This would mean there is a good approximate cut with r1 = 1, r2 = 0!

There’s nothing stopping us from continuing this process until we find something like

Exp[A|r1 = 1, r2 = 0, ..., rn = 1] ≥ m/2.

At this point, though, all the randomness is gone, and we’d conclude that choosing S according to
these r′is gives a cut with size m/2.

In summary, if we were able to quickly compute these conditional expectations to find a good choice
of ri at each step, we would have a deterministic algorithm to find a 1/2-approximate max cut — like
cutting a beam through the search tree of the 2n-time algorithm mentioned above.

• How can we compute these conditional expectations? Suppose we’re considering Exp[A|r1 =
1, r2 = 0, ..., ri = 1]. We can split the vertices of G into three groups: the one’s already assigned to
the cut (call that set R), the one’s already assigned not to the cut (¬R), and the rest (X). Certainly
we’re going to get all the edges between R and ¬R, let E(R : ¬R) be that count. The other edges
we might include are those between R and X , between ¬R and X , and within X4. One can check
that that the chance of any one of these other edges ending up in the cut is 1/2, and so by linearity of
expectation we have

Exp[A|...] = E(R : ¬R) + 1

2
· [E(R : X) + E(¬R : X) + E(X : X)] .

Using this, we arrive at the following derandomized 1/2-approximation algorithm for MAXCUT.

Algorithm B (1/2-approximation, via Conditional Expectations).

– R← ∅,¬R← ∅
– for i = 1 to n:

* if (#edges i to R)≤ (# edges i to ¬R)
3Sometimes called the Method of Conditional Probabilities.
4Ignoring loops!

2

· R← R+ {i}
* else

· ¬R← ¬R+ {i}
– return R

The cut produced by Algorithm B will be guaranteed to have ≥ m/2 edges by our work above, and
Algorithm B may be made to run in O(m) time since it only needs to touch every edge once.

• Method of Small Probablity Spaces. Next we will look at a different way to derandomize Algorithm
A using the method of small spaces. The idea is that we will deterministically search through possibil-
ities for ~r in Algorithm 1, but only a small subset H of them.5 In particular, we’d like an H ∈ {0, 1}n
satisfying

a. |H| � 2n (we really want polynomial in n)

b. Exp~r∈RH [|∂S(~r)|] ≥ m/2.

If we had such an H we could deterministically test all ~r ∈ H and (by 1) it wouldn’t take too long
and (by 2) we would be guaranteed to find a cut of size ≥ m/2.

How can we find such a set H? The key observation is that we would like to restrict attention to ~r
such that pairs of vertices (i, j) joined by an edge are unlikely to have ri = rj , in turn making it likely
edge (i, j) is in the cut. This sounds like a job for hashing.

Let H̃ be a UHF of h : [n] → {0, 1}. We will use the Carter-Wegman family from before as an
example:

– Pick p prime in [n, 2n].

– H̃ = {ha,b : a ∈ {1, ..., p− 1}, b ∈ {0, ..., p− 1}}, where

ha,b(x) = ((ax+ b) mod p) mod 2.

Note that |H̃| = p(p − 1) ≤ p2 ≤ 4n2, and that, by the properties of a UHF, Prh∈H̃ [h(i) = h(j)] ≤
1/2.

But this means that if we define our H as

H = {(h(1), h(2), ..., h(n)) : h ∈ H̃},

we have |H| = O(n2), checking property 1, and also Pr~r∈H [ri 6= rj] ≥ 1/2, checking property 2 by
linearity of expectation. Thus we obtain our second derandomized version of Algorithm A:

Algorithm C (1/2-approximation, via Small Spaces).

– Define H as above, using the Carter-Wegman family (and n the number of vertices in the input
graph).

– Run through ~r ∈ H until we find one yielding an S with |∂S| ≥ m/2, which we return.

5The letter H is to foreshadow hashing.

3

• Final Notes

– Algorithm B is fast, O(m), time but not (obviously at least) parallelizable. Algorithm C is
parallelizable, but not so fast. Is to possible to find a deterministic algorithm which is both fast
and parallelizable?

– BPP denotes the class of problems with “bounded-error probabilistic polynomial time” algo-
rithms (see https://en.wikipedia.org/wiki/BPP_(complexity) for more de-
tails). It is conjectured that P=BPP, which means that any problem with a “bounded-error
probabilistic polynomial time” solution also has a polynomial time deterministic solution. For
MAXCUT, for example, Algorithm A shows 1/2-approximation of MAXCUT is in BPP and
Algorithms B and C show it’s in P. Many problems in BPP are still waiting on polynomial deter-
ministic algorithms, such as “polynomial identity testing,” the problem of determining whether
a polynomial is identically equal to the zero polynomial.

4

https://en.wikipedia.org/wiki/BPP_(complexity)

