
How to sample from a distribution?1

• In the previous two lectures, we saw applications of importance/non-uniform sampling which sample
objects not from a universe uniformly at random but with probability proportional to some weight or
importance. For instance, in the #DNF application it was sampling a set from a collection of sets with
probability proportional to the size of the set, and in the Cohen-Lewis algorithm (which itself was an
importance sampler), it was picking a row with probability proportional to the square of the sum of
the row, etc. However, how does one do that? How much time does it take to sample from such a
distribution?

• Before we go to non-uniform sampling, let us first address uniform sampling. We want to design an
algorithm which given a positive number n returns an integer i ∈ [n] with probability 1/n. If we have
only access to random bits (that is, the press of a button gives me 0 or 1 with probability 1/2) and n
is a power of 2, then we can simulate the uniform sampler with log2 n random bits. Do you see how?
Hint: every number has a binary representation. If n is not a power of 2, then one could use rejection
sampling to get a Las-Vegas algorithm which runs in O(log n) expected time. For what follows, we
are going to assume that we have the power to uniformly sample. That is, given any N , we can get
a sample in [N] in one unit of time. This is not an unreasonable assumption in many programming
environments.

• Set up. We assume there is a universe U of n elements, and we are given weights w1 to wn which we
are going to assume are non-negative integers. Our goal is to sample i ∈ U such that

Pr[i] =
wi∑n
i=1wi

Assume you have the power to uniformly sample from a set of n elements.

• The sampling algorithm has two phases: a preprocessing step which reads the weights and does some
work, and a query step which you think of as a button. You press the button and out pops the i as
desired. We would like the preprocessing step to take O(n) time since it takes that much time to even
read the input. We would want the query time to be much faster.

• Solution 1. The idea is to think of the the wi’s as gaps between flags on a road which is
∑n

i=1wi

units long, and one samples uniformly a “mile” along this road and picks the first flag coming after it.
(Ideally, I would draw a figure here.)

To be more concrete, in the preprocessing step, one computes the array S[0 : n] defined as

∀1 ≤ i ≤ n, S[i] :=
∑
j≤i

wj

It should be clear S[0 : n] can be computed in O(n) time using running sums, and is sorted increasing.

Then, in the query phase, we do the following:
1Lecture notes by Deeparnab Chakrabarty. Last modified : 12th April, 2023

These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

1

a. Sample uniformly r ∈R [S[n]].

b. Perform binary search to find smallest i such that r ≤ S[i].

c. Return i.

Exercise: Convince yourself that for any i ∈ {1, 2, . . . , n} the probability we sample i in Step 3
above is wi

S[n] .

The query time is dominated by binary search and is O(log n). In particular, if we make K queries,
then the total query time is O(K log n). This is not bad.

Remark: What if the wi’s were real numbers? Well then we need a stronger primitive: we would
need to have the ability to generate a random real number between [0, 1] in O(1) time. Hopefully,
the reader can modify the above algorithm to work for real wi’s with this primitive.

• Solution 2, a slight “improvement” when K is known. So, if you were making K queries, then the
total time would be O(n + K log n). One can do a shade better if we knew the parameter K in
advance.

The idea is to run “Step 1” of the above algorithm K times up front. This takes O(K) time. Then,
we sort these K numbers, and this takes O(K logK) time. Let’s say the sorted random numbers are
r1 ≤ r2 ≤ · · · ≤ rK . Next, we merge (as in merge sort) with the array S, and as we are merging
for each rk, 1 ≤ k ≤ K, we figure out the smallest ik such that rk ≤ S[ik]. We return (i1, . . . , iK).
I am not explaining all the details here, but hopefully you can figure this out. This can be done in
O(K +N) time.

So, the total time is O(K logK +N), which doesn’t look much better. Except, the merging step is a
“cache-efficient” step because you can pull big chunks of the array into fast memory, merge, and then
continue, while binary search is not cache-efficient as its access patterns on the array go all over the
place. Once again, I am not being formal here because it’ll take us away too much, but once again,
hope this is clear.

Next let’s see a smart algorithm which makes the query time down to O(1).

2

• Solution 3: Walker’s Alias Method2. The idea is to pre-process cleverly. For this algorithm, we will
actually assume the wi’s are non-negative reals and we have the ability to sample a uniform real
number in [0, 1].

To begin with, let’s define pi := wi/
∑

iwi, and so we want to design a sampler which returns i with
probability pi. The idea above was to consider n flags in a one mile long road where pi is the gap
between the (i − 1)th and ith flag, randomly land on this road, and then binary search to find the
nearest flag ahead of you. The bulk of the time is taken in binary-searching.

The alias method proceeds differently. It first processes the vector (p1, . . . , pn) to get another vector
(B1, . . . , Bn) where each Bt is a structure containing two tuples:

Bt =

{
(i, qi), (j, qj) : 1 ≤ i ≤ n, 1 ≤ j ≤ n, 0 ≤ qi, qj ≤

1

n
, qi + qj =

1

n

}
and for all 1 ≤ i ≤ n, if we sum up the qi’s over all the buckets containing an “i-tuple” then we get
pi.

Let’s unpack this. Imagine the n numbers as n different colors with pi units of each color. The total
amount

∑
i pi = 1. Imagine the Bt’s as “buckets” which can contain different colors. The processing

leads to buckets where each bucket has (at most) two different colors such that the total amount in
every bucket is the same, and thus equals 1

n .

A priori, it is not clear how to obtain this data structure. But let us show that if we do have this data
structure, then one can sample i with probability pi using O(1) time.

1: procedure ALIAS-QUERY(p1, . . . , pn):
2: Sample t ∈ {1, 2, . . . , n} uniformly at random.
3: Let Bt = {(i, qi), (j, qj)} with, recall, qi + qj =

1
n .

4: Sample z ∈
[
0, 1

n

]
.

5: If z ≤ qi, return i; else, return j.

Claim 1. The above sampler returns a coordinate i ∈ 1, . . . , n with probability pi.

Proof. Fix an i in [n]. For t ∈ [n], let zi(t) be the amount of i in Bt. More precisely, if (i, qi) ∈ Bt

then zi(t) = qi, otherwise it is 0. Note:
∑n

t=1 zt(i) = pi. The probability i is returned by the above
sampler is

n∑
t=1

Pr[t sampled]︸ ︷︷ ︸
= 1

n

·Pr[i sampled | t sampled]

What’s the probability i is sampled given bucket t is sampled? If zt(i) = 0, then it’s 0. Otherwise, it
is zt(i)/(1/n) = nzt(i). Substituting above gives the answer.

• So, the interesting part is to get the data structure. One begins with an initial bucket configuration
where bucket Bt contains only one tuple (t, pt). One can think of another tuple (i, 0) for an arbitrary
i. We maintain the invariant that we never have more than two tuples in a bucket.

2Walker, A. J. (September 1977). An Efficient Method for Generating Discrete Random Variables with General Distributions.
ACM Transactions on Mathematical Software. 3 (3): 253–256.

3

https://dl.acm.org/doi/10.1145/355744.355749

Let’s use bt to denote the total amount of “stuff” in bucket Bt; in particular, if Bt = {(i, qi), (j, qj)},
then bt := qi + qj . In the end, we want all bt’s to be 1/n.

Call a bucket Bt full if bt = 1
n . Call a bucket underfull if bt < 1

n . Call a bucket overfull if bt > 1
n .

We will maintain the invariant that an underfull or an overfull bucket has only one tuple (i, qi) with
qi > 0; initially this is true. The pre-processing algorithm keeps moving stuff from overfull buckets
to underfull buckets.

1: procedure ALIAS-PREPROCESSING(p1, . . . , pn):
2: Initialize Bt := {(t, pt)} for 1 ≤ t ≤ n.
3: while there exists overfull bucket do:
4: Pick an overfull bucket Bt = {(i, qi)} with qi > 1/n.
5: Pick an underfull bucket Bs = {(j, qj)} with qj < 1/n.
6: Modify: Bt = {(i, qi + qj − 1/n)} and Bs = {(j, qj), (i, 1

n − qi)}.

Note that Line 6 makes the bucket Bs full while Bt could remain overfull, or become underfull, or if
qi + qj = 2/n, become full. In any case note: Bt still contains only one tuple, and the number of full
buckets increases by 1. The latter implies there are at most n loops. Also note that we can keep the
overfull, undefull, and full buckets in a list moving them when needed; these take O(1) time. Thus
the total preprocessing time is O(n).

4

