
Sets1

1 Basics

• Definition. A set is an unordered collection of distinct objects. These objects are called elements of
the set. These elements could be anything, for instance, the element of a set could be a number, could
be a string, could be tuples of numbers, and in fact can be other sets!

• Roster Notation. A set can be described by explicitly writing down the elements, such as

S = {1, 3, 5, 7, 9} or T = {apple, banana, volcano, 100} or W = {S, T}

This is called the roster notation. Note that the elements of the set W are the sets S and T .

• The ∈ and /∈ notation. We use the notation “element” ∈ “set” to indicate that the “element” is in
the “set”. We use /∈ to denote that the element is not in the set. In the above example, 3 ∈ S and
apple ∈ T and S ∈ W . But be wary : 3 /∈ W . When figuring out if an element is in a set, we don’t
“keep opening” the sets inside.

• Set Builder Notation. A set can also be described implicitly by stating some rule which the elements
follow. For example,

S = {n : n is a positive odd integer less than 10} or V = {x2 : x is an integer and 1 ≤ x ≤ 5}

This is called the set-builder notation.

The sets S described in the above two examples correspond to the same set. The set V , written
explicitly in the roster notation, is V = {1, 4, 9, 16, 25}.

Remark: Caution: Unless otherwise explicitly mentioned, duplicate items are removed from a
set. For example, consider the set A = {x2 : −2 ≤ x ≤ 2} in the set-builder notation. In the
roster notation, this set is {0, 1, 4} and not {4, 1, 0, 1, 4}.

• Cardinality of a set. The cardinality of a set S is denoted as |S| is the number of elements in the set.
For example if A = {apple, banana, avocado}, then |A| = 3.

Exercise: What is |A| when A = {x2 : −3 ≤ x ≤ 3, x ∈ Z}?

If the set S has only finitely many elements, then |S| is a finite number, and S is called a finite set. |S|
could be ∞ in which case the set is called an infinite set.

• Famous examples of Infinite Sets. N, the set of all natural numbers; Z, the set of all integers; Q,
the set of all rational numbers, R, the set of all real numbers; and P, the set of all computer programs
written in Python. This course will mostly talk about finite sets. We will visit infinite sets (perhaps)
in the very end of this course.

1Lecture notes by Deeparnab Chakrabarty. Last modified : 16th Jun, 2024
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!
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• Empty Set. There is only one set which contains no elements and that set is called the empty set or
sometimes the null set. It is denoted as ∅ or {}.

• Subsets and Supersets. A subset P of a set S is another set such that every element of P is an
element of S. In that case, the notation used is P ⊂ S or P ⊆ S. Note that S ⊆ S as well, that is, a
set is always a subset of itself. In case P is a subset and not equal to S, it is called a proper subset. It
is denoted as P ⊊ S.

For example, if A = {1, 2, 3} and B = {1, 2}, then B ⊊ A.

Remark: The empty set ∅ is a subset of all sets. This is a convention.

If A ⊂ B, then B is called a superset of A. This is denoted as B ⊃ A.

• Power Set. Given any set S, the power set P(S) is the set of all subsets of the set S. It is a set of sets.
Note by the above convention, for any set S, the empty set ∅ ⊆ S and therefore, ∅ ∈ P(S).

Exercise: Write down all subsets of the sets S = {1, 2}, T = {1, 2, 3} and U = {1, 2, 3, 4}. Do
you see a pattern in the number of subsets?

2 Set Operations.

• Union. Given two sets A and B, the union A ∪ B is the set containing all elements which are either
in A, or in B, or both. For example, if

A = {1, 3, 4, 7, 10} and B = {2, 4, 7, 9, 10}, then A ∪B = {1, 2, 3, 4, 7, 9, 10}

• Intersection. Given two sets A and B, the intersection A∩B is the set containing all elements which
are in both in A and in B. For example, if

A = {1, 3, 4, 7, 10} and B = {2, 4, 7, 9, 10}, then A ∩B = {4, 7, 10}

Two sets A and B are called disjoint if A ∩B = ∅.

Remark: By definition, ∪ and ∩ are commutative: that is A∪B = B ∪A and A∩B = B ∩A.

• Difference. Given two sets A and B, the set difference A \B are all the elements in A which are not
in B and B \A are the elements in B which are not in A. For example, if

A = {1, 3, 4, 7, 10} and B = {2, 4, 7, 9, 10}, then A \B = {1, 3} and B \A = {2, 9}

Exercise: Is \ operator commutative? Can it ever be that A \B = B \A for any two sets A and
B?
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• Cartesian Product.

Given any two sets A and B, the Cartesian product A × B is another set whose elements are tuples
(that is, ordered pairs) whose first entry comes from A and the second entry comes from B. Therefore,
in the set-builder notation

A×B = {(a, b) : a ∈ A and b ∈ B}

For example, if A = {1, 2, 3} and B = {a, b}, then

A×B = {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}

Remark: Note that A×B is in general not equal to B×A. In particular, in the above example,
the elements of B × A are {(a, 1), (b, 1), (a, 2), (b, 2), (a, 3), (b, 3)}. The element (a, 1) is not
the same as (1, a) for the order matters. A tuple is not a set.

Exercise: Can you figure out the cardinality of |A×B| in terms of |A| and |B|?

• Associativity. We can apply ∪s and ∩s with three or more sets. For instance, given three sets A,B,C,
the set A ∪ B ∪ C is the set (A ∪ B) ∪ C. The associativity property means that it’s the same as
A∪ (B ∪C) and along with commutativity, it’s the same as (C ∪A)∪B. The order of which sets are
union-ed first doesn’t matter. Similar to addition. Indeed, A ∪B ∪ C is the set of all elements which
are either in A or in B or in C.

The same is true for ∩-operator as well. The set A ∩B ∩C is the set of elements which are common
to all three sets.

Remark: The set-difference operator, however, is not associative. So, if you see the expression
A \ B \ C, then you would have to ask for clarification: is it A \ (B \ C) or is it (A \ B) \ C.
These are two different sets. In particular, the first set can contain elements in A∩C which aren’t
in B, while the latter doesn’t. The same also holds for the normal minus sign: (5 − 3) − 2 and
5−(3−2) are different numbers. However, unlike arithmetic, there is no agreed upon convention
of which one A \B \ C means.

• Distributive Property When we have both operators, union and intersection, then the order in which
we take them matters. Therefore, the expression A∪B ∩C is ill-defined. This is because, in general,
(A ∪ B) ∩ C and A ∪ (B ∩ C) are two different sets. This is similar to the relation between + and
×: (2 + 3) × 4 and 2 + (3 × 4) are different. And unlike arithmetic symbols, there is no accepted
convention like PEDMAS/BODMAS which clarifies which takes precedence. So, please be careful
and put parentheses.

Exercise: Is there any relation between (A ∪ B) ∩ C and A ∪ (B ∩ C)? Is one subset of the
other?

Just like + and ×, the ∪ and ∩ satisfies the following distributive property.
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Theorem 1. For any three sets A,B,C, we have

(a) (A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C).

(b) (A ∩B) ∪ C = (A ∪ C) ∩ (B ∪ C).

Proof. We prove (a) and leave (b) as an exercise.

To show equality of two sets, we need to show two things. For every x in the LHS set, we need to
show it lies in the RHS set. And vice-versa.

Pick any x ∈ (A ∪ B) ∩ C. Therefore, x ∈ C and x ∈ A or x ∈ B. If x ∈ A, then since x ∈ C,
we have x ∈ A ∩ C, and therefore x is in the RHS set. If x ∈ B, then a similar argument shows
x ∈ B ∩ C and therefore x is in the RHS set.

Now the vice-versa. Pick any x ∈ (A∩C)∪ (B ∩C). x is either in A∩C or in B ∩C. Suppose x ∈
A∩C. Then, x ∈ A which implies x ∈ A∪B, and therefore, since x ∈ C, we have x ∈ (A∪B)∩C.
The other possibility, that is if x ∈ B ∩ C also symmetrically implies x ∈ (A ∪B) ∩ C.

Exercise: True or False: If A and B are disjoint sets, and C ⊂ A, then are C and B disjoint?

Remark: Some useful observations:

a. A and B \A are disjoint since B \A doesn’t contain elements of A.
b. In particular, this implies (A ∩B) and B \A are disjoint since A ∩B ⊆ A.
c. A ∪ (B \A) = A ∪B. This is because every element of A ∪B is either in A, and if not in

A, must be in B \A.
d. (A ∩ B) ∪ (B \ A) = B. This is because every element of B is either in A (in which case

it is in A ∩B) or in B \A.

3 Baby Inclusion-Exclusion

• We now meet the first non-trivial (but simple) statement in the course. It is the “baby” inclusion-
exclusion identity/equation/formula. It is “baby” because we will meet the grown-up version later in
the course. But the baby is strong enough for many things.

• Before we go to the inclusion-exclusion, we start with a simpler but key claim.

Claim 1. If A and B are two disjoint finite sets, then |A ∪B| = |A|+ |B|.

Proof. Since A and B are finite, they have well-defined cardinalities which are non-negative integers.
Let |A| = k and let |B| = ℓ; note that these can be 0.

We are now going to name the elements of our sets. This will be very helpful in our reasoning. Indeed
naming objects is a key thing to learn in this course. There is fantastic power in this simple sounding
step. And so, to this end, let A = {a1, a2, . . . , ak} and let B = {b1, b2, . . . , bℓ}. Note that if either k
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or ℓ or both are 0, then the corresponding set would be {} that is, the empty set ∅. So this notation is
well defined.

Now for the key observation : since A and B are disjoint, we know that ai ̸= bj for any indices i and
j. Therefore, A ∪ B = {a1, a2, . . . , ak, b1, b2, . . . , bℓ} since it must contain all items of A and B.
Thus, by inspection now, |A ∪B| = k + ℓ = |A|+ |B|.

Remark: We can extend claim 1 to multiple sets. A definition first. A collection of n sets,
A1, A2, . . . , An, are called pairwise disjoint if Ai ∩ Aj = ∅ for all i ̸= j. That is, any two
different sets are disjoint. Then, one can extend the claim above with a similar proof to the fol-
lowing generalization. We give a different argument below which contains the main idea behind
the “proof by induction” technique.

Claim 2. If A1, A2, . . . , An are pairwise disjoint finite sets, then |A1 ∪ A2 ∪ · · · ∪ An| =∑n
i=1 |Ai|.

Proof. (Sketch) Let me show why the n = 3 case holds. The idea is to think of A1 ∪ A2 as one
set and apply the claim above. Since A1∩A3 = ∅ and A2∩A3 = ∅, we have (A1∪A2)∩A3 = ∅.
So,

|(A1 ∪A2) ∪A3| = |A1 ∪A2|+ |A3|

And then since A1 ∩ A2 = ∅, we get |A1 ∪ A2| = |A1|+ |A2| which if we substitute above, we
get |A1∪A2∪A3| = |A1|+ |A2|+ |A3|. Do you now see how to generalize for a general n?

• Now we are ready for stating and proving the baby inclusion-exclusion theorem.

Theorem 2 (Baby Inclusion-Exclusion). For any two finite sets A and B, we have

|A ∪B| = |A|+ |B| − |A ∩B|

Proof. Since A ∪B = A ∪ (B \A) and since A and B \A are disjoint, we get

|A ∪B| = |A|+ |B \A| (1)

Since B = (A ∩B) ∪ (B \A) and since (A ∩B) and B \A) are disjoint, we get

|B| = |A ∩B|+ |B \A| (2)

Subtracting (2) from (1), we get

|A ∪B| − |B| = |A| − |A ∩B|

The theorem follows by taking |B| to the other side.
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Answers to exercises

• Note that A = {9, 4, 1, 0}, and thus the answer is 4. Although −3 and +3 are distinct, their squares
are not, and in the set A they are counted only once.

• The set of subsets of S are {∅, {1}, {2}, {1, 2}}, and there are four of them. The set of subsets of T
are

{∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

and there are eight of them. I will let you write all the subsets of U . Do you see the pattern now?

• True. If A and B are disjoint, then no element of A is present in B. Since C is a subset of A, no
element of C is present in B either. Conversely, no element of B is present in A (since they are
disjoint), and thus no element of B can be present in C either.

In general, C ⊆ A implies C ∩ B ⊆ A ∩ B. If the second set is ∅, then C ∩ B has to be ∅ since that
is the only subset of an empty set. Thus, C and B are disjoint too.

• In general, A \ B ̸= B \ A. However, if A = B, then both A \ B and B \ A are ∅. Is that the only
possibility?

• By the distributive property, (A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C). Since A ∩ C ⊆ A, we get that
(A ∪B) ∩ C ⊆ A ∪ (B ∩ C)

• It is simply |A×B| = |A| · |B|, the product of the two cardinalities. In the “combinatorics” module,
this will be called the “product principle”. Do you see why this is true? For each of the |A| choices of
the “first entry” in the tuple of A×B, there are precisely |B| choices for the “second entry”.
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