
Probability: Conditional Probability, Independence1

• Conditional Probability. Often, we are interested in questions of the form

What are the chances of “blah” happening, if we know that “blooh” has already occured?

Concrete examples:

– What is the probability that a roll of fair die lies in the set {1, 2, 3} given that the roll is an odd
number?

– What is the probability that a roll of two fair dice sums to 6 given that the sum is an even number?

In both these questions above, there are two events of interest. For example, in the first example, one
event isA which occurs when the roll of the fair die lies in the set {1, 2, 3} (this is really the event we
are interested in). But there is also another event, let’s call it B, which occurs when the roll of the fair
die is an odd number. The first question is asking, what is the probability that A occurs given that B
has already occurred.

This probability is different then just Pr[A] or just Pr[B]. It is called the conditional probability of
event A occuring given that B has already occured. And it is denoted as

Pr[A | B]

We will derive the formula for the above, but before that, let’s solve the question one above using
a tree diagram. Below is the tree diagram for a single dice throw. The “blue lightnings” (the ones
on top) indicate the outcomes which lead to the even B, that is, the die comes out odd. The “red
lightning” (the one on bottom) indicates the outcome A which we are interested in.

1 2 3 4 5 6

1/6 1/6 1/6 1/6 1/6 1/6

When calculating the conditional probability, we are guaranteed that the “blue lightning” has struck,
and among all the outcomes in which the blue lightning strikes, what is the likelihood that the red
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deeparnab@dartmouth.edu. Highly appreciated!
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lightning strikes as well. Therefore, when trying to figure out Pr[A | B], the sample space has
changed! It is not Ω any more, but rather it is B. Furthermore, the whole set A is no longer the event
we are interested in: indeed, all outcomes in the set A \ B are irrelevant as they lie outside our new
sample space. For example, in the example above, the event {2} is irrelevant since 2 is not odd. Thus,
the new event in this new sample space is A ∩ B — the part of A that lies in B. Therefore, the new
probability is calculated as:

Pr[A | B] :=
Pr[A ∩ B]

Pr[B]
(Cond Prob)

Coming back to the dice problem number 1, Pr[B] = 1/2 and Pr[A∩B] = 2/6, thus, the probability
that the die gives a number in {1, 2, 3} when given that the die gives an odd number is 2/3.

Exercise: Solve the second dice problem: what is the probability that a roll of two fair dice sums
to 6 given that the sum is an even number?

Exercise: I roll two dice. A be the event that the first die is odd. E is the event that the sum of
the two dice is odd. What is Pr[A | E ]?

• Chain Rule.
A simple but important consequence of the definition of conditional probability is the chain rule.

Theorem 1. For any two events A and B, we have Pr[A ∩ B] = Pr[B] · Pr[A | B]. More
generally, for any collection of events A1,A2, · · · ,Ak, we have

Pr[A1∩A2∩· · ·Ak] = Pr[A1] ·Pr[A2 | A1] ·Pr[A3 | A1∩A2] · · ·Pr[Ak | A1,A2, . . . ,Ak−1]

Here’s an example showing how this is useful: what’s the probability that 5 randomly drawn cards
from a standard deck are all hearts?

Think of drawing these cards one by one from the deck to your hand. Let Ai, for i = 1, 2, . . . , 5 be
the event that the ith card is a heart. We need to figure out Pr[A1 ∩ A2 · · · ∩ A5].

Note:

– Pr[A1] = 13
52 ; there are 13 hearts to begin with, and 52 cards in all.

– Pr[A2 | A1] = 12
51 . Why? Given thatA1 has occurred, the deck now is one heart missing. Thus,

there are 51 cards in all and only 12 of them are hearts.

– Similarly continuing, we get Pr[A3 | A1,A2] = 11
50 ; Pr[A4 | A1,A2,A3] = 10

49 ;
Pr[A5 | A1,A2,A3,A4] = 9

48 .

– Thus, Pr[A1 ∩ · · ·A5] = 13
52 ·

12
51 ·

11
50 ·

10
49 ·

9
48

Exercise: Suppose we take a random ordering of the elements (1, 2, 3, . . . , n). What is the
probability that 1 is in the first place, and 2 is in the second place, 3 is in the third place, and 4 is
in the fourth place of this random ordering?
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• The Law of Total Probability.

Sometimes conditioning helps in figuring out probability of events. That is, suppose we are interested
in finding the probability of eventA. Sometimes this is easier to do if we already know whether some
event B has taken place or not. Then, we can use the following formula to figure out the probability
of A.

Theorem 2. For any two events A and B,

Pr[A] = Pr[A | B] ·Pr[B] + Pr[A | ¬B] ·Pr[¬B]

Proof. The proof follows by noticing that the event (subset) A can be partitioned into two disjoint
subsets as follows:

A = (A ∩ B) ∪ (A ∩ ¬B)

Convince yourself of this fact.

Thus, Pr[A] = Pr[A∩B] +Pr[A∩¬B]. And the theorem follows from the formula for conditional
probability.

In a bag there are two coins. One is a fair coin which, when tossed, lands heads with probability 0.5.
The other, however, is a biased coin which, when tossed, lands heads with probability 0.75. You pick
one of the two coins at random. What is the probability you see heads?

You could do this with a tree diagram, but we can also do with the above law of total probability (it is
the same thing!). LetA be the event that we see heads; we are interested in Pr[A]. Let B be the event
we pick a fair coin; so ¬B is the event we pick the biased coin.

We know, by the problem definition, Pr[A | B] = 0.5 and Pr[A | ¬B] = 0.75. Furthermore, since
we pick one of the two coins at random, we gt Pr[B] = 0.5. Therefore, by the law of total probability,

Pr[A] = (0.5) · (0.5) + (0.75) · (0.5) = 0.625

Exercise: Redo the above example using tree diagrams. To verify and also to get used to the fact
that they are all the same.

In fact, there are two successive generalizations of the law of total probability which at times are
useful.

Theorem 3. Let B1,B2, . . . ,Bk be mutually exclusive events (that is pairwise disjoint) such that∑k
i=1Pr[Bi] = 1. Then,

Pr[A] =

k∑
i=1

Pr[A | Bi] ·Pr[Bi]
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Theorem 4. Let B1,B2, . . . ,Bk be mutually exclusive events (that is pairwise disjoint) with B1∪
B2 ∪ · · · ∪ Bk = B, Then,

Pr[A | B] =

k∑
i=1

Pr[A | Bi] ·Pr[Bi | B]

• Independent and Dependent Events.

In the example above, the probability that a roll of a fair die is 3 if nothing more is told (the answer is
1/6) is different from the probability that a roll of a fair die is 3 given that the roll is an odd number
(the answer is 1/3). Thus, the event B, that the roll was odd, told us something about the event A
whether the roll was 3. B had some dependence on A.

But many times two events may not show such dependence. For example, consider having two dice.
Let A be the event that the first die rolls a 3. Let B be the event that the second die rolls an odd
number. Would Pr[A] and Pr[A | B] be different? You may feel of course not – what does the roll of
the second die have to do with the roll of the first die? And you would be correct. Nevertheless, let’s
just calculate Pr[A | B] in this example.

Pr[A | B] =
Pr[A ∩ B]

Pr[B]
=

3
36
3
6

=
1

6
= Pr[A]

where the numerator can be found by drawing the tree diagram as last time. Indeed, the only outcomes
which lead to A ∩ B are {(3, 1), (3, 3), (3, 5)}.
This brings us to a very, very important definition.

Remark: Given a random experiment, two events A and B are independent if and only if
Pr[A | B] = Pr[A]. Equivalently,

Pr[A ∩ B] = Pr[A] ·Pr[B]

Exercise:If A and B are independent, show that ¬A and ¬B are independent.

Remark: N events E1, E2, . . . , EN are mutually independent independent if

Pr[E1 ∩ · · · ∩ EN ] = Pr[E1] ·Pr[E2] · · ·Pr[EN ]

Often times, when the outcomes of the two events in consideration are “generated” using different
“sources of uncertainty” (eg, the two dice in the previous example), then these are independent events.
Here are some examples of independent events. Confirm this by figuring out Pr[A ∩ B], Pr[A], and
Pr[B].
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– Two coins are tossed. A is the event the first lands heads, B is the event that the second lands
tails.

– An n-length bit string is picked at random from all n-length bit strings. A is the event that the
first bit is 0. B is the event that the second bit is 0.

– A card is drawn from a standard deck of cards. A is the event that the card’s suit is hearts. B is
the event that the cards rank is King.

– Two fair dice are rolled. A is the event that the first die lands an odd number. B is the event that
the sum of the two dice is an odd number.

The last three events may not be “clear” they are independent since they talk about the same event
(same random string, same random card, same tuple of outcomes). Do the exercise to confirm that
they are indeed independent.

Exercise: Here are some examples of events – figure out which are dependent and which are
independent. Check your intuition by really figuring out Pr[A ∩ B], Pr[A], and Pr[B].

– A box contains three red balls and three blue balls. We first pick a ball at random and throw
it away in the ocean. We then pick a second ball at random. A is the event that the first ball
is blue, and B is the event that the second ball is blue.

– A box contains three red balls and three blue balls. We first pick a ball at random and throw
it back in the box. We then pick a second ball at random. A is the event that the first ball is
blue, and B is the event that the second ball is blue.

– We take a random permutation of the numbers {1, 2, 3, . . . , n}. A is the event that the
number 1 lands in the first place of this random permutation. B is the event that the number
2 lands in the second place of this random permutation.

• The Union Bound.
Let us finish the lecture notes with a question related to the last lecture notes

Among 50 random people, what’s the chance that at least one of them has a birthday
on Jan 1?

Once again, the assumption is that every person is equally likely to have a birthday on any of the 365
days.

To do so, let us set the stage by defining smaller events which will help us answer our question. Let
us number the N = 50 people 1 to N . Let us say the event Ei occurs if the person i’s birthday is Jan
1. Note two things:

Pr[Ei] =
1

365
for all 1 ≤ i ≤ N (1)

This is the assumption we are making. And the event E we are really interested in is

Pr[E1 ∪ E2 ∪ · · · ∪ EN ] (2)

Now, if Ei’s were mutually exclusive (as subsets of the sample space, these events were disjoint), then
we would indeed have the probability of the union is the sum of the individual probabilities. However,

5



that is not the case. E1E∈ may not be the empty set since both people could be born on Jan 1. And
thus, in general, Pr[E1 ∪ · · · ∪ EN ] 6=

∑N
i=1Pr[Ei].

Nevertheless, the union’s size can never be larger than the sum of the individual sizes, and thus we
get an upper bound on the probability of the union. This upper bound is so widely used, that it has its
own name. We may even see one use before we are done.

Theorem 5 (The Union Bound). For any events E1, E2, · · · , EN , we have

Pr[E1 ∪ E2 ∪ · · · ∪ EN ] ≤
N∑
i=1

Pr[Ei]

Therefore, the chance that one out of 50 people is born on Jan 1 is at most 50/365. Also, another
way we could have guessed the answer wouldn’t exactly be the sum, is that there was nothing special
about 50 people. However, if we had 400 people, the probability could not have been 400/365 —
probabilities can never exceed 1.

The above union bound is nice but it doesn’t help us answer the question exactly. However, indepen-
dence will allow us to solve this problem.

The main observation is that Ei’s are mutually independent since they are random people with dif-
ferent independent sources of randomness (At some level, this is an assumption baked into the ques-
tion.). Indeed, ¬E1,¬E2, · · · ,¬EN are independent. Thus, Pr[¬E1 ∩ · · · ∩ ¬EN ] =

∏N
i=1Pr[¬Ei] =(

1− 1
365

)N . Finally, we use De Morgans to get if E = E1 ∪ · · · ∪ EN , then

¬E = ¬E1 ∩ · · · ¬EN

in turn implying

Pr[E ] = 1−Pr[¬E ] = 1−
(

1− 1

365

)N

which, if N = 50, is around 12.8%, that is, closer to 46.78/365.
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Answers to some exercises.

• Exercise: Solve the second dice problem: what is the probability that a roll of two fair dice sums
to 6 given that the sum is an even number?

The two events are as follows. A is the even the two dice sum to 6. B is the event that the sum if
even. We are asked for Pr[A | B]. We observeA∩B = {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)}, and thus,
Pr[A ∩ B] = 5/36. We also observe |B| = 6 · 3 = 18; we applied product principle: the first dice
can be any of the 6 choices, and given that die roll, the second die has to be of the same parity (odd if
odd, even if even). Thus, it has 3 choices. Thus, Pr[B] = 1/2. Giving Pr[A | B] = 5/18.

• Exercise: I roll two dice. A be the event that the first die is odd. E is the event that the sum of
the two dice is odd. What is Pr[A | E ]?

We know from the previous exercise (odds and evens flipped) that Pr[E ] = 1/2. What is Pr[A∩ E ]?
A ∩ E is the tuples (a, b) where a is odd and a + b is odd. The number of possibilities of a is 3. And
for each, the number of choices of b is 3 (even). Thus, Pr[A ∩ E ] = 9/36 = 1/4. Thus, the answer
to the conditional probability is 1/2.

Another way of seeing this : the sum is odd if and only if exactly one of the two dice are odd. By
symmetry this is equally likely among the two. Therefore, the answer is 1/2.

• Exercise: Suppose we take a random ordering of the elements (1, 2, 3, . . . , n). What is the
probability that 1 is in the first place, and 2 is in the second place, 3 is in the third place, and 4 is
in the fourth place of this random ordering?

Let Ei be the event that we get i in the ith place. What this question is asking is to figure out

Pr[E1 ∩ E2 ∩ E3 ∩ E4]

We apply chain rule to get that the above is

Pr[E1] ·Pr[E2 | E1] ·Pr[E3 | E1 ∩ E2] ·Pr[E4 | E1 ∩ E2 ∩ E3]

The first probability is (n−1)!
n! = 1

n . The second probability is (n−2)!
(n−1)! = 1

n−1 . Do you see why? Given
that the first entry is 1, the remaining n − 1 positions are scrambled, and the chance that the second
one is 2 is (n− 2)!/(n− 1)!. Going similarly, we get that the answer is 1

n(n−1)(n−2)(n−3) .

• Exercise: If A and B are independent, show that ¬A and ¬B are independent.

One way to prove this is by observing that by De Morgan, ¬(¬A ∩ ¬B) = A ∪B. Thus,

1−Pr[¬A ∩ ¬B] = Pr[A ∪B] = Pr[A] + Pr[B]− Pr[A ∩B]︸ ︷︷ ︸
=Pr[A]·Pr[B] by independence

Rearranging,

Pr[¬A∩¬B] = 1−Pr[A]−Pr[B]+Pr[A]·Pr[B] = (1−Pr[A])·(1−Pr[B]) = Pr[¬A]·Pr[¬B]

proving independence.

7


