
Probability: Deviation Inequalities1

• Deviation Inequalities

We have seen an example that Exp[X] may not be anywhere close to what values X can take (recall
the X = 10000 with 0.5 probability and −10000 with 0.5 probability). Deviation inequalities try to
put an upper bound on the probability that a random walk deviates too far from the expectation.

The mother of all deviation inequalities is the following:

Theorem 1. (Markov’s Inequality)

Let X be a random variable whose range is non-negative reals. Then for any t > 0, we have

Pr[X ≥ t] ≤ Exp[X]

t

Before we embark on to the proof of Markov’s inequality, let us actually understand what it says. For
simplicity, assume the probability distribution is uniform (so the expectation is the usual “average”).
And also let’s fix t = 2. Also, just for concreteness, let X denote the height of a random person in
a group of people. Then, Markov states that the fraction of people whose height is at least twice the
average is at most 1/2. Indeed, if not, then more than 1/2 the fraction will be more than 2 times the
average, but that will just drive the average up. The proof below is basically this argument for general
probability distributions.

Proof. By definition of expectation, we have

Exp[X] =
∑
k∈R

k ·Pr[X = k] =
∑

0≤k<t

k ·Pr[X = k] +
∑
k≥t

k ·Pr[X = k]

The first summation
∑

0≤k<t k · Pr[X = k] ≥ 0 since all terms are non-negative. The second
summation is

∑
k≥t k ·Pr[X = k] ≥ t ·

∑
k≥tPr[X = k] = t ·Pr[X ≥ t].

Putting it all together, we get
Exp[X] ≥ t ·Pr[X ≥ t]

which gives what we want by rearrangement.

Markov’s inequality only talks about non-negative random variables. Indeed, the example in the
beginning of this bullet point shows that it cannot be true for general random variables. This is where
variance comes to play. The following is one of the most general forms of deviation inequalities.
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Theorem 2. (Chebyshev’s Inequality)

Let X be a random variable. Then for any t > 0, we have

Pr[|X −Exp[X]| ≥ t] ≤ Var[X]

t2

Proof. We first note that

Pr[|X −Exp[X]| ≥ t] = Pr[(X −Exp[X])2 ≥ t2]

Then we notice that D := (X − Exp[X])2 is a non-negative random variable, and therefore we can
apply Markov’s inequality on it to get

Pr[|X −Exp[X]| ≥ t] = Pr[D ≥ t2] ≤ Exp[D]

t2
=

Var[X]

t2

Theorem 3. A useful corollary to the above, and one which is often used as rule of thumb, is
obtained by setting t = cσ(X) for some c ≥ 0. One gets,

Pr[|X −Exp[X]| ≥ cσ(X)] ≤ 1

c2

Proof. When t = cσ(X) is substituted in Chebyshev’s inequality, one gets the RHS in the above
corollary by reminding oneself that σ(X) =

√
Var(X).

Example

– Suppose we toss 1000 fair coins. What are the chances that we see more than 600 heads? In this
case, let Z be the random variable which evaluates to the number of heads seen in the toss of
1000 coins. We are interested in the question

Pr[Z ≥ 600]?

To evaluate this, we define random variables X1, X2, . . . , X1000, where Xi is the indicator ran-
dom variable for the ith toss; that is, it is defined to be 1 if the ith toss is heads, and it is defined
to be 0 if the ith toss is tails. We observe four crucial things:

* Z = X1 +X2 + · · ·+X1000.

* Exp[Xi] = 0.5 for all 1 ≤ i ≤ 1000. This is because the coins are fair.

* X1, X2, . . . , X1000 are ( mutually) independent.

* Var[Xi] = 0.25 (see variance example above – with p = 0.5)
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Linearity of expectation gives us

Exp[Z] =
1000∑
i=1

Exp[Xi] = 1000 · 0.5 = 500

The fact that the Xi’s are (mutually) independent, allows us to use linearity of variance, to get

Var[Z] =

1000∑
i=1

Var[Xi] = 1000 · 0.25 = 250

Finally, we can apply Chebyshev’s inequality as follows

Pr[Z ≥ 600] = Pr[Z − 500 ≥ 100] We have subtracted the expectation from both sides

≤ Pr[|Z − 500| ≥ 100] if Z − 500 ≥ 100, surely the absolute value is.

≤ Var(Z)

1002
Chebyshev’s Inequality

=
1

40
Substituting Var[Z] = 250.

Thus, the chances we see more than 600 heads is at most 2.5%.

Remark: The true answer to the question of what is the probability we see more than 600 heads
is in fact much, much lower. The reason is that when a random variable can be written as a sum
of mutually independent random variables, then the rule of thumb for the deviations is

The probabilityX is more than c standard deviations away is of the order of e−c
2/2

The above statement is qualitative rather than quantitative (and therefore I use the term “order
of”). But one can see in the above coins example, the standard deviation is

√
250 ≈ 16. Thus

seeing more than 100 heads than the mean is being off by more than 6 standard deviations. The
chances of this is roughly e−6

2/2 which is roughly 1 in 100 million! Way smaller than 2.5%.

You should use a computer to check it out.

Exercise: Do the following exercises mimicking the above example.

– Suppose every email I get independently is spam with probability 1%. I receive 100 emails.
What is the probability that more than 7 of them are spam?

– Suppose I roll 100 normal dice, and add the sum up. What is the probability that the total
sum is less than 100?
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