
Graphs: Matchings and Hall’s Theorem1

• Matchings. A matching M in a graph is a subset of edges M ⊆ E such that for any e, e′ ∈ M ,
e ∩ e′ = ∅. That is, M is a collection of edges which do not share end points. A vertex v ∈ V
participates in the matching M if there is an edge in M which is incident to v.

These are fundamental objects and have numerous applications. For instance, in economics, where the
bipartite graph contains agents on one side and items on the other, where the edges represent desirable
items, and each agent has only a demand of one item, then a matching corresponds to an allocation of
desirable items to these agents.

A matching is a perfect matching if every vertex of V appears in some edge of the matching.

• Matchings in Bipartite Graphs. In this course, we look at matchings in bipartite graphs. To this
end, fix a bipartite graph G = (V,E) where V has been partitioned in to L ∪ R. We say that a
matching M ⊆ E is an L-matching if all vertices in L participate in M . Similarly, a matching M is
an R-matching if all vertices in R participate in M . A bipartite graph has a perfect matching if and
only if it has an L-matching and an R-matching.

Given a graph, how can we tell whether or not there is an L-matching (likewise R-matching)? Today,
we are going to state an amazing theorem (called Hall’s theorem) which gives the necessary and
sufficient conditions for a bipartite graph to have an L-matching. Then, we look at some applications
of this theorem. Next class, we will prove this remarkable theorem. This may be the deepest theorem
you learn in this course.

Before, we state the theorem, let us recall some notions. The neighborhood of a vertex v in G is the
set NG(v) := {u ∈ V : (u, v) ∈ E}. Note that when G is bipartite, and if v ∈ L, then NG(v) ⊆ R.
And vice-versa. Next, we generalize the definition of neighborhood to subsets of vertices. Given any
subset S ⊆ L, we define

NG(S) :=
⋃
v∈S

NG(v)

That is, we take the union of all the neighborhoods of vertices in S. In English, NG(S) is the set
of vertices in R which have at least one neighboring vertex in S. Figure 1 shows three examples of
subsets and their neighborhoods in a given graph

Now we are ready to state Hall’s theorem.

Theorem 1 (Hall’s Theorem). Let G = (V,E) be a bipartite graph with V = L ∪ R. Then, G
has an L-matching if and only if

For every subset S ⊆ L, |NG(S)| ≥ |S|

Corollary 1. A bipartite graph G = (L ∪R,E) has a perfect matching if and only for any S ⊆ L or
S ⊆ R we have |NG(S)| ≥ |S|.
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Figure 1: Examples of S and NG(S) in a bipartite graph.

Going back to Figure 1, Hall’s theorem says if G doesn’t have an L-matching, then there must be
some subset S ⊆ L such that |NG(S)| < |S|. As it happens, this example has a perfect matching, and
so every subset S ⊆ L must have |NG(S)| ≥ |S|.

Remark: Going back to the Prover-Verifier mode of thinking, imagine you have a bipartite
graph G = (L ∪ R,E), and you wish to know if there is an L-matching or not. The Prover is
all powerful, and can easily find the answer out. But you also need a certificate of whether what
they are claiming is correct or not.

In case G has an L-matching, this certificate is easy — Prover just shows the L-matching. As
Verifiers, we check if all purported edges are indeed present and also check if they don’t intersect,
etc.

If G does not have an L-matching, then the Prover resorts to Hall’s theorem. They know that
there must exist some subset S ⊆ L such that |NG(S)| < |S| (if not, then Hall’s condition holds,
and the graph has an L-matching). And this subset S is what they send. And we, as verifiers,
figure out NG(S), see that |NG(S)| < |S|, and we are now convinced G cannot have an L-
matching — if it did, then all vertices of S would have to be matched to |S| many distinct vertices
in NG(S), but |NG(S)| < |S|.

• Applications of Hall’s Theorem We show two applications and in the UGP we explore a few more.

– Left-dominant bipartite graphs. A bipartite graph G = (L∪R,E) is left dominant if degG(x) ≥
degG(y) for any x ∈ L and any y ∈ R. The Hall’s theorem shows that any left-dominant graph
with no isolated vertices has an L-matching.

Proof. By Hall’s theorem, it suffices to show that for any subset S ⊆ L, |NG(S)| ≥ |S|. To this
end, fix a subset S.
Let Dmin := minx∈S degG(x) and Dmax := maxy∈NG(S) degG(y). G being left-dominant
means Dmin ≥ Dmax. No isolated vertices implies Dmin, Dmax 6= 0.
Now consider the graph H induced by (S ∪ NG(S)); let H = (S ∪ NG(S), ES). Note that
degH(x) = degG(x) for all x ∈ S, and degH(y) ≤ degG(y) for all v ∈ NG(S). The latter
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holds since we only delete vertices and edges; the former holds because all neighbors of x ∈ S
are present in H .
Next note (from the drill)

(a) |ES | =
∑

u∈S degH(v) =
∑

u∈S degG(u) ≥ Dmin · |S|, and
(b) |ES | =

∑
w∈NG(S) degH(w) ≤

∑
w∈NG(S) degG(w) ≤ Dmax · |NG(S)|.

Thus, we get,
Dmin · |S| ≤ |ES | ≤ Dmax · |NG(S)|

implying |NG(S)| ≥ |S| since Dmin, Dmax 6= 0.

Exercise: Prove that a regular bipartite graph always has a perfect matching.

– Completeing Latin Rectangles to Latin Squares.
A Latin rectangle is an r × n matrix with r ≤ n. Each entry of the matrix has numbers from an
alphabet {a1, a2, . . . , an}. Think of these as colors – more vibrant that way! The constraint is
that any row and any column has no repeating entry. So, if we go up a column or left-to-right a
row, no color is repeated.
So, for example, the following are examples of Latin rectangles; one is a 2 × 5 and the other is
a 3× 5.

a1 a2 a3 a4 a5
a2 a3 a4 a5 a1

a1 a2 a3 a4 a5
a3 a1 a4 a5 a2
a2 a5 a1 a3 a4

An n × n Latin rectangle is called a Latin square. A completion of an r × n Latin rectangle is
an n× n Latin square whose first r rows is the Latin rectangle. The question is:

Can every Latin rectangle be completed?

And the answer is:

Theorem 2. Every Latin rectangle can be completed.

Proof. Let us fix an r × n Latin rectangle T . Now, we show how to construct an (r + 1) × n
Latin rectangle whose first r rows are the rows of T . We can then repeat this till we get our
desired Latin square.
We do so by using Hall’s theorem! Pause here for a moment. There are no graphs mentioned.
And yet, Hall’s theorem? The main a ha! moment is to construct a bipartite graph using T . We
do so as follows.
We construct a bipartite graph G = (L∪R,E). L is the set of colors {a1, a2, . . . , an}. R is the
set of positions of the (r + 1)th row, given by {1, 2, . . . , n}. We have an edge (ai, j) in E if the
color ai does not appear in the jth column of T . That is, the color ai is a feasible candidate to
be put in the jth column of the (r + 1)th row. This completes the description of the graph. As
an illustration, for the 3× 5 table shown above, we would have the graph as in Figure 2.
Now observe: if G has a L-matching, then we can fill the (r+1)th row. Indeed, if the matching
has the edge (ai, j) we put the color ai on the jth column of the (r + 1)th row.
To show that G has a perfect matching, we show that G is a left-dominant graph, that is, every
x ∈ L, every y ∈ R satisfies degG(x) ≥ degG(y).
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Figure 2: Construction of graph from Latin rectangle

Fix a vertex x ∈ L. What is degG(x)? For each column of the (r + 1)th row, exactly r colors
are disallowed and so (n− r) colors are allowed. Thus, degG(x) = n− r.
Now fix a vertex y ∈ R. What is degG(y)? This is the number of columns of the (r + 1)th
row in which the number y can be put. This is precisely the columns in which y doesn’t appear.
But y appears in r different columns, and thus the number of columns free for y is also (n− r).
Thus, not only is G left-dominant, but rather it is a regular graph; all degrees are equal.
Therefore, G has a L-matching. And thus, one can add an (r + 1)th row to this Latin rectangle.
And go on like this till one gets a Latin square.
Again, we illustrate it to get the 4th row for the 3 × 5 rectangle shown in the previous page.
Recall, Figure 2 was the corresponding bipartite graph. We see (as we should) that it is regular,
and thus it contains an L-matching. Indeed, one of the matchings is shown below in Figure 3
below.
Given this matching, one sees that the 4th row as being (a5, a4, a2, a1, a3) (because 1 matched
to a5, 2 matched to a4 and so on), which when slapped onto the rectangle gives us

a1 a2 a3 a4 a5
a3 a1 a4 a5 a2
a2 a5 a1 a3 a4
a5 a4 a2 a1 a3
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Figure 3: A matching in the graph from Latin rectangle
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