Numbers: RSA'!

* Recap. Let us recap some facts we will be needing for today’s class.

a. (Modular Exponentiation) For any three positive numbers a,b,n, we can efficiently compute
a® mod n using MODEXP.

b. (Bezout) For any two positive numbers a,b, we can efficiently compute integers x,y such that
xa + yb = ged(a, b) using EXTGCD.

c. In particular, if ged(a,n) = 1, we can efficiently compute integers x,y such that xa + yb = 1.

d. (Multiplicative Inverse) Therefore, if gcd(a,n) = 1, we can efficiently compute a~* modulo n;
the number b such that ab =,, 1. We do this by taking x mod n for the x in the above bullet
point.

e. (Fermat’s Little Theorem.) If p is a prime and gcd(a, p) = 1, then aP~! =, L
f- (Problem Set 8, Problem 2(a).) If p|a and q|a where p and q are distinct primes, then pq|a.

* Cryptography. Alice wants to send a message m to Bob. Unfortunately, the channel in which Alice
is speaking to Bob is completely transparent and can be plainly read. So, she wants to instead send
a cipher c such that (a) upon receiving ¢, Bob can figure out m, but (b) any one else, say Eve, upon
receiving c can’t obtain any information about m.

As can be seen, some asymmetry is required between Bob and Eve. The “traditional” way of achieving
this is that Alice and Bob pre-decide on some information called a key and use it to figure out ¢ from
m. This key is something that only Alice and Bob know; in particular, the eavesdropper Eve doesn’t.

For instance, the key could be some long integer k of the same length as m, and Alice can encrypt m
to get cipher c by letting ¢; = (m; + k;) mod 10 for every digit i. Note that Bob can easily decrypt
since he has the key k: he does the opposite action of (¢; — k;) mod 10. Also note that Eve can have
no idea what m was by just looking at ¢ since k can be an arbitrary key.

One issue with the above protocol is that Alice and Bob need to agree upon the key beforehand. It can
be shown that if the same key is used repeatedly, then Eve can actually figure out the key (especially if
she can impersonate as Alice). So, keys need to be constantly generated and shared; but then if Alice
and Bob can share keys secretly often, why not just use that time to swap the messages?

* Public Key Cryptography (PKC). This is a fantastic idea which gets over the key sharing business.

In this every person who wishes to receive a message (say Bob, or any website who needs credit card
info) generates two keys. One key is the public key pk which they announce to the world. The other
is the secret key sk which they guard with their lives. To summarize, the key they generate is a tuple
(pk, sk); pk they tell everyone, and sk they tell no one (including Alice).

A PKC protocol consists of two functions/algorithms Enc and Dec. Both of these are also public; the
code is also published by Bob.

Lecture notes by Deeparnab Chakrabarty. Last modified : 28th Aug, 2021
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

Now, if Alice wants to send a message to Bob, she can encrypt a message m using the public key to
get
Enc(m, pk) — ¢

She then sends ¢ across to Bob. Note that Eve knows ¢ and knows pk and also knows the algorithm
Enc. She still shouldn’t have any clue what m is. In other words, it shouldn’t be easy for Eve to invert
this function Enc.

Bob, upon receiving the cipher ¢, then uses the decryption algorithm Dec to get the message back.
This decryption algorithm will use both keys.

Dec(c, pk, sk) — m

The RSA Algorithm. These lecture notes are “direct” and do not mimic the lecture I gave where 1
tried to run through the idea of “how one could come up with RSA?”. Whichever works.

a. Key Generation.

— Bob picks two primes p and g; these will be large, distinct primes.
— Let N:=pgandletop:= (p—1)(¢ — 1).
Bob picks another number e such that ged(e, ¢) = 1.

Bob computes the multiplicative inverse of e modulo ¢. Call it d.
Bob’s public key is (e, N).
Bob’s secret key is d.

1: procedure RSAGENKEYS(p, q, €) > Assumes p, q are primes, and ged(e, (p—1)(g—1)) =

1.
s > Returns tuple (pk, sk) of public key, secret key.
3: N + pq.
4 9+ (-1(e-1).
5: d <~MULTINVERSE(e, ¢)
6: pk < (e, N).
7 sk « d.
8:

return (pk, sk).

b. The Encryption algorithm is as follows.
— Suppose Alice wants to send m to Bob. We assume m € {1,2,..., N — 1}; otherwise,
Alice needs to break her message into pieces.

— Alice’s cipher ¢ = m® mod N; she evaluates this using Bob’s public key (e, N) and uses
modular exponentiation.

1: procedure RSAENC(m, pk) > Assumes pk = (e, N)
2 > Returns cipher c.

3: ¢ < MODEXP(m, e, N).

4 return c.

¢. The Decryption algorithm is as follows.

— Upon receiving ¢, Bob recovers the message m using his secret key d by computing ¢ mod
N.

1: procedure RSADEC(c, pk, sk) > Assumes pk = (e, N) and sk = d
2 > Returns message m.

3: m < MODEXP(c,d, N).

4 return m.

* RSA example. Suppose Bob selects two primes say p = 5 and ¢ = 11. Then N = 55 and ¢ = 40.
Bob selects a number e = 13 such that ged(e, ¢) = 1. He then calculates d = e~! w.r.t ¢ using the
EXTGCD algorithm; in this case 37 = 13! with respect to 40. Bob’s public key is (13,55) while is
secret key is 37.

Now suppose Alice wants to encrypt a message in {1,2,...,54}; say 29. The encryption is
Enc(21, 13, 55) = 29'3(mod 55) = 24

To decrypt this, Bob does the following
Dec(24,37) = 2437 (mod 55) = 29

* Correctness of RSA. We prove that as long as m € {0,1,2,..., N—1}, then if Alice sends the cipher
according to the RSA encryption algorithm, then Bob will get back the same m when he decrypts. In
particular, we prove the following theorem.

Theorem 1. Let (e, V), d be the (public,secret) key pairs generated by Bob. Then for any m €
{0,1,...,N — 1}, Alice sends ¢ = m® mod N. Then, ¢! mod N = m.

d

Proof. We need to show ¢® mod N = m, that is, we need to show m¢ = N m, that is

We need to show <m€d — m> =50 (D

Now, d is the inverse of e modulo ¢ = (p — 1)(¢ — 1). Thus,

ed=41 = ed=¢-x+1 forsome integer x

Therefore,
(med — m) =N (m‘b""chl — m) =N m- (md"z - 1) 2)

Next, we show the RHS of (2) is =, 0 and =, 0. By the Pset 8, Problem 1(b), namely if p divides a
and ¢ divides a, then pq divides a, we would get (1).

Let us prove m - (m¢'z — 1) =, 0 with the =, 0 being analogous. Two cases. One, gcd(m,p) # 1,
that is p divides m. In that case m =, 0 implies m - (m?® — 1) =, 0.

Otherwise, ged(m, p) = 1. Fermat’s Little Theorem then implies, m?~1 =, 1. Taking both sides to
the power (¢ — 1)z, we get mP—Dlg-1)z =, 1, that is, me® —1 =, 0. Thus in this case also we get
m- (m‘z"l’ — 1) =, 0. O

Remark: One corollary of the above theorem, and something to actually appreciate, is that
every distinct message in 7 actually must have a distinct cipher.

* A very short discussion on security of RSA. Why RSA is secure is beyond the scope of this course.
But take CS62 someday or some other security course.

There are two “beliefs” which are involved in the security of RSA. It is good to state them out.

— It is believed that knowing N and e and m® mod IV, one cannot “quickly” figure out m.

— Itis believed that knowing N, one cannot “quickly” find the factors of N.

The former is probably clear — if the cipher could tell us the message, then we are in trouble. For the
latter, note that if NV can be factored into p and ¢, then any Eve could figure out ¢ = (p — 1)(¢ — 1)
and then could figure out the sk by running MULTINVERSE herself.

Is factoring really hard? This may seen weird. Especially, since our grade school teachers taught that
to be the way to compute ged(!!) ALso, sure we can factor 21 into 3 x 7. However, if IV has hundreds
of digits, things are not that clear anymore.

A final word. Although no one knows of an algorithm for factoring, in 1994 Peter Shor showed an
algorithm for factoring using quantum computers. And this started the whole field of post quantum
cryptography where people try to build a public key cryptosystem which can’t be broken even with
quantum computers. Since I have not said what quantum computers are, let me say no more.

