
Graph Basics1

These notes are supposed to be a brush up of mostly definitions about graphs that we will need for the
rest of the course. Also added is a section on priority queues and their implementation using heaps. I am
going to use this data structure as a black-box. It is a pretty useful data structure you may have seen in other
CS classes.

Graphs

Formally, a graph is a pair of sets often denoted as G = (V,E). For this course, V is a finite set which we
often assume to be {1, 2, . . . , n}. E is a set whose elements are pairs of elements from V . Notationally,
this is denoted as E ⊆ V × V where the latter is the Cartesian product of sets. We will often use m as the
number of edges.

The above formalism comes to life when we draw a picture of the above definition. On the plane, we
draw n points naming them using the elements of V . We call these points vertices. For every pair (u, v) ∈ E,
we draw a line segment from point named u to point named v. These line segments are called edges. Doing
so, we get a pictorial representation of the object G = (V,E), something which allows us human beings to
comprehend much better than the sets written as sequence of pairs. So much so, that the set V is called the
vertex set and the set E is called the edge set of the graph G. Here’s an example.

1

2

3

5

4

Figure 1: Above is the pictorial representation of the graph G =
({1, 2, 3, 4, 5}, {(2, 3), (4, 5), (1, 2), (4, 3), (1, 5)}). Most of us will easily recognize the picture than
parse through the numbers given here to understand it means a cycle on 5 vertices.

Remark:

• As one can see from the formal definition above, the pair (u, u) technically can be in E. These
pairs are called loops. Occasionally, it makes sense to define E as a multi-set, that is, which
allows the same edge (u, v) to appear more than once. In the pictorial notation, these would lead
to multiple parallel line segments between the points. These edges are called parallel edges. A
graph is called simple if it has no loops or parallel edges.

1Lecture notes by Deeparnab Chakrabarty. Last modified : 19th Mar, 2022
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

1

• In the above definition, elements of the edge E have been considered to be unordered pairs.
Often, it will make sense to talk of ordered pairs, that is, where (u, v) and (v, u) are different
elements. In such cases, in the pictorial notation we draw an edge (u, v) as a line segment from u
to v and mark it with an arrow pointing towards v. The vertex v is called the head and the vertex
u is called the tail of the edge (u, v). Such graphs with arrows are called directed graphs. Note
that simple directed graphs can have so-called “antiparallel” edges (the edges (u, v) and (v, u).)

Graphs have changed the world. It is hard to understate this. What started as recreational puzzles has
been the bedrock of things that are used day-to-day a billion times: from getting people and packets from
point A to point B fast, to discovering relations between proteins which lead to drug design and disease
understanding. To do all these, there are many computational problems on graphs that need to be solved
and need to be solved fast. Graph algorithms are key and have a very rich theory developed in the last 60
years. In this course we will see some basic graph algorithms which you all should soak in your muscles
and blood.

How does a computer see a graph?

Unlike humans, computers (as of today) don’t see any benefit to pictorial representations. To a computer,
one needs to describe graphs using the language it understands: matrices, lists, and ultimately bits. There
are two standard ways.

Adjacency Matrix. Given a graph G = (V,E) with n vertices, the adjacency matrix is an n × n matrix
AG whose columns and rows are indexed by the vertices of G. For any two vertices u and v in V , we have
AG[u, v] = 1 if and only if (u, v) ∈ E. Note if G is undirected, then AG is symmetric, but for directed
graphs AG need not be. Figure 2 shows an example. As you may be feeling, this way of representing wastes

2

1

8

3

6

5

4

7

9

1 2 3 4 5 6 7 8 9

1 1 1 1 1

2 1 1 1

3 1 1 1 1

4 1 1

5 1 1 1

6 1 1 1 1

7 1 1 1 1

8 1 1 1 1

9 1 1 1

Figure 2: Adjacency Matrix. The empty spaces in the matrix are zeroes.

a lot of space: indeed, why explicitly write a zero when it means not one? Thus, most often one uses the
next style of storing graphs.

Adjacency Lists. The other way, and the way that we will be mostly using in the course, is that of adjacency
lists. Given G = (V,E), we have an array L indexed by the vertices which contain pointers to doubly linked
lists. For a vertex u, the list L[u] contains all the neighbors of u, that is vertices v such that (u, v) ∈ E, in
an arbitrary fashion. Figure 3 shows an example.

2

2

1

8

3

6

5

4

7

9

1

8

9

2

3

4

5

6

7

2 8 6 7

1 3 9

2 8 6 4

3 7 5

4 8 6

3 1 7

1 9 4 6

3 1 9

2 8 7

Figure 3: Adjacency Lists.

Comparison. The following table shows the comparison of the above two methods.

Operation Adj. Matrix Adj. Lists (naive) Adj. Lists with Hashing
Is (u, v) an edge? O(1) O(min(deg(u),deg(v)) O(1)

Iterate over neighbors of v O(|V |) O(deg(v)) O(deg(v))
Add an edge (u, v) O(1) O(1) O(1)

Delete an edge (u, v) O(1) O(deg(u) + deg(v)) O(1)
Space O(|V |2) O(|E|) O(|E|)

The third column of the table is the implementation of the adjacent lists using hashing. We probably will
not see how this is done in this course, but hashing may be something you may have seen before.

Some definitions/notations regarding graphs

Given a graph G = (V,E), we often reserve n to denote the number of vertices and m to denote the number
of edges. Since G is simple, m can vary from 0 (if the graph is “empty”) to

(
n
2

)
= O(n2). A special case is

when m = O(n); such graphs are called sparse graphs.

Degrees. If G is undirected, the degree of a vertex v, denoted as deg(v) is the number of edges incident on
v. That is, it is the number of edges of the form (v, u). If G is directed, the vertex v has two degrees. The
out-degree deg+(v) is the number of directed edges (v, u) for which v is the tail. The in-degree deg−(v)
is the number of directed edges (u, v) for which v is the head. The handshake lemma states the following
(which you should recall from CS 30): For any undirected graph G = (V,E),

∑
v∈V deg(v) = 2|E|. For

any directed graph G = (V,E),
∑

v∈V deg+(v) =
∑

v∈V deg−(v) = |E|.

Walks, Paths, Trails, Cycles, Circuits. Again, some stuff you may have seen before. A brush-up from
CS30. Fix a graph G = (V,E), directed or undirected. Here are some definitions. To illustrate, consider the
graph in Figure 2.

3

• An alternating sequence w = (v0, e0, v1, e1, . . . , ek−1, vk) where each vi ∈ V and ei ∈ E is called
a walk in the graph G if for all 0 ≤ i ≤ k − 1, the edge ei = (vi, vi+1). There is no restriction on
repetitions: both vertices and edges could repeat. The length of this walk is k which is the number of
edges in the walk. The first vertex v0 is called the source or origin of the walk; the last vertex vk is
the sink or desitnation. In a simple graph, the walk could just be specified by the vertices as the edges
are implied by this; but whenever we describe a walk, we will use this alternating notation.

For instance, w = (1, (1, 8), 8, (8, 5), 5, (5, 4), 4, (4, 3), 3, (3, 8), 8, (8, 1), 1, (1, 2), 2) is a valid walk.
Note that the vertices 8, 1 and the edge (8, 1) repeats.

• A walk w is called a trail if no edges repeat, but vertices may.

For instance, t = (1, (1, 8), 8, (8, 5), 5, (5, 4), 4, (4, 3), 3, (3, 8), 8, (8, 9), 9) is a valid trail. The vertex
8 repeats.

• A trail C is called a circuit if the source and sink of the trail are the same. That is, the trail starts and
ends at the same location.

For instance, C = t ◦ ((9, 2), 2, (2, 1), 1)) is a valid circuit where t is the example of the trail above,
and ◦ is the concatenation operator.

• A walk is called a path if no vertices repeat.

For instance, p = (1, (1, 2), 2, (2, 3), 3, (3, 8), 8) is a path. Often a path is just denoted with the
vertices like p = (1, 2, 3, 8).

• A circuit C is a cycle if no vertices repeat. A singleton vertex v0 is also a cycle of length 0. Also note
that in directed graphs, two antiparallel edges form a valid cycle of length 2.

For instance, C = p ◦ ((8, 1), 1)) is a valid cycle.

The following is a simple but very important fact.

Lemma 1. Given any walk w from vertex u to v, there is also a path from u to v using a subset of the edges
of w.

Proof. We prove by induction on the number of edges in w. Let the length of the walk w be `. That is,
w = (u = v0, e0, . . . , e`−1, v` = v). If ` = 1, then w is also a path, and the claim is vacuously true (this is
the base case).

Now suppose the claim is indeed true for all walks of length `′ < `, and we want to prove it for this
walk w of length `. Firstly, we observe that if no vertices repeat in w, then w is a path by itself and there is
nothing to prove. So, suppose the vertex vi repeats as vj for some j > i.

Now we do the following shortcutting operation on the walk w. Construct the following walk

w′ = (v0, e0, v1, e1, . . . , ei−1, vi, ej , vj+1, . . . , e`−1, v`)

This is a valid walk since ej = (vj , vj+1) which is the same as (vi, vj+1). Also, the length of w′ is strictly
less than that of w. In fact, the length has dropped by (j − i). Finally, w′ is also from u to v. By Induction,
there is a path from u to v which is a subset of w′ and thus a subset of w.

Similarly, one can prove (and either recall or try proving as above) the following.

4

Lemma 2. Given a circuit C, prove there exists a cycle C ′ which is a subset of edges of C.

Lemma 3. Given a walk w which has at least one vertex repeating, prove there is a cycle which is a subset
of w.

Lemma 4. Any walk’s edges can be decomposed into a path from the walk’s source to destination plus a
bunch of cycles.

A graph is called acyclic if it contains no cycles. An acyclic undirected graph is called a forest. A directed
acyclic graph is often called by its acronym, DAG2.
Connectivity. This is an important concept. Given a graph G = (V,E) and two vertices u, v, we say v
is reachable from u if and only if there is a path from u to v. The notion of graph connectivity is subtly
different for undirected and directed graphs.

• An undirected graph G is connected if every vertex u is reachable from every other vertex v. Note
that in an undirected graph if u is reachable from v then v is reachable from u.

Given any undirected graph G, one can decompose its vertex set V into a partition V = V1 ∪ V2 ∪
· · · ∪ Vk where Vi ∩ Vj = ∅ for i 6= j, such that G[Vi] is connected, and for any u ∈ Vi and v ∈ Vj , u
and v are not reachable from each other. These Vi’s are called the connected components of G. Here,
G[Vi] is the subgraph of G induced by Vi; formally G[Vi] = (Vi, Ei) where Ei ⊆ E with (x, y) ∈ Ei

if and only if x, y ∈ Vi and (x, y) ∈ E.

• A directed graph G is weakly connected if one ignores the arrows on the edges, the underlying undi-
rected graph is connected. This is rather unsatisfactory as it doesn’t tell us about what the connectivity
is in the directed graph. A directed graph is strongly connected if for any two vertices u and v in V ,
both u is reachable from v and v is reachable from u. Any directed graph can be partitioned into
strongly connected components: V = V1 ∪ · · · ∪ Vk such that each G[Vi] is strongly connected and
for any u ∈ Vi and v ∈ Vj either u is not reachable from v, or v is not reachable from u, or both.

• An undirected graph G is a tree if it is acyclic and connected. A directed acyclic graph G is a rooted
(out-)tree, if (a) the underlying undirected graph (will all arrows removed) is a tree, and (b) there is a
particular vertex r (the root) with the property that for any other vertex v in G, there is a path from r
to v in the directed graph G. Note: there cannot be a path from v to r as well since G is acyclic. If in
condition (b) instead there was path from v to r, for every v, then the graph would be a rooted in-tree.

Some Computation Problems on Graphs. The following problems are some computation problems that
we will tackle first in this course.

REACHABLE?
Input: Graph G = (V,E). Two vertices u, v.
Output: Is v reachable from u?

CYCLE?
Input: Graph G = (V,E).
Output: Does the graph G have a cycle?

2https://www.youtube.com/watch?v=zH64dlgyydM

5

https://www.youtube.com/watch?v=zH64dlgyydM

CONNECTED COMPONENTS

Input: Undirected Graph G = (V,E).
Output: Connected Components of G.

STRONGLY CONNECTED COMPONENTS

Input: Directed Graph G = (V,E).
Output: Strongly Connected Components of G.

Data Structure: Heaps and Priority Queues

We will be using the following data structure, called priority queues, at least once (perhaps twice), and in
any case this is worth knowing. A nice exposition can be found in one of the text-books; CLRS is more
detailed and verbose, while DPV is terser.

Here is what we want to maintain. There is a set S of objects with (key, value) pairs whose keys come
from an n element universe U . We may as well assume the keys are numbers from 1 to n. We want to allow
the following 4 operations:

• INSERT(S, x): Insert an object x into S.
• DELETE(S, x): Delete an object x from S.
• DECREASE-VAL(S, x, v): Decrease the value of x ∈ S to v only if v is smaller than x’s current value.
• EXTRACT-MIN(S): Return the x ∈ S with minimum value and delete it.

Of course one can just use an array A[1 : n] where A[x] stores the value of x ∈ S and ⊥ otherwise.
The first three operations take O(1) time, however, the last operation takes Θ(n) time. On the other hand if
we store the items as a MIN-HEAP, then all the operations take O(log n) time. Using heaps to implement
priority queues is the most common way.

There is another data structure called the FIBONACCI HEAP which can implement the first three opera-
tions in O(1) time3 and the last in O(log n) time. Seems like the best of both the array-and-the-heap world.
The following table encapsulates all this.

Operation Array Heap Fibonacci Heap
INSERT(S, x) O(1) O(log n) O(1)
DELETE(S, x) O(1) O(log n) O(1)

DECREASE-VAL(S, x, v) O(1) O(log n) O(1)
EXTRACT-MIN(S) O(n) O(log n) O(log n)

3I am lying. The O(1) is only amortized over many calls. We, unfortunately, won’t cover amortized analysis in this course.

6

